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ABSTRACT

Colloidal matter and the road to trainable materials

Hector Manuel Lopez de la Cerda Rios

The ability to create matter through the manipulation of single atoms remains elusive.

This is due to the high energetic cost of manipulating single atoms and the complexity

of chemical bonding. Thus the scientific and engineering community has moved towards

creating matter using larger subunits that are easier to manipulate and functionalize.

These colloidal systems, comprised of nanometer to micrometer sized particles, have been

employed to create colloidal materials that have been shown to be analogs to atomic solids

and hard condensed matter systems. However, considering how tunable these subunits

have become, there is evidence that colloidal matter can be designed to have properties

that resemble a sense of trainability, which has been assumed to be exclusive to animate

matter. Training in materials consists of tuning a material’s response by a cyclic exposure

to an external stimulus, each cycle leading to a reconfiguration of its internal degrees of

freedom. Exploiting this behavior can lead to a new paradigm for materials design. In

this work we focus on the internal degrees of freedom of different colloidal systems to gain

an empirical understanding of the requirements needed for trainable synthetic materials.
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CHAPTER 1

Introduction

The line that separates the living and the not living is not fine at all. The manner in

which the living can replicate, be autonomous, and continuously dissipate energy through

processes which regulate their vitals, i.e. homeostasis, is a far cry from a piece of metal

undergoing impact testing. Although this classification scheme describes very disparate

objects, the living and non-living in fact can be conjoined by analyzing them in a more

general lens using the paradigm of collective phenomena or emergent behavior [1, 2]. Here,

eating and breathing are behaviors associated to a response of a collection of parts that

regulate the amount of oxygen and nutrients in the interior of an organism. Meanwhile, in

a simple inanimate object there is no real sense of regulation of its internal structure. The

piece of metal in a stress test will respond by deforming or breaking, and depending on the

amount of deformation, it may not relax back to its initial state, and much less heal after

breaking. Meanwhile, living materials will activate internal processes to combat being

taken away from the organism’s "equilibrium" conditions, for example, animals and plants

can heal when suffering a cut or a broken limb or branch. A piece of metal cannot because

its internal degrees of freedom lack the complex internal structure of living matter. This

brings us to the following questions we would like to address in this thesis: can we design

inanimate matter to respond to external stimuli in specific ways by programming specific

features into its internal degrees of freedom? If so, can inanimate matter be designed

to replicate behavior largely associated to living systems such as training? Through the
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study of self-assembled colloidal crystals, and non-equilibrium soft matter systems, we try

to try to find answers to these questions and find empirical requirements for training in

materials.

1.1. Colloidal matter and self-assembly

Creating materials using a bottom up approach from atoms is difficult as manipulating

atoms requires large energy sources, and also due to the complexities of chemical bond-

ing [3, 4]. An easier approach towards material synthesis is using colloids, suspensions

comprised of particles, oligomers, and polymers. Due to their ease of synthesis, func-

tionalization, and visualization [5, 6], colloids have been used to form crystals, gels, and

other composite systems. The ability to finely design particles and their interactions in

order to form materials has provided a window into the inner workings of nucleation and

dislocation in not only colloidal solids but also atomic ones [7]. Moreover, being able to

create crystals and colloidal material from a bottom up approach using tunable building

blocks grants us the ability to answer one of the motivating questions of this thesis: can

we design responses to external stimuli by programming features into a material’s internal

degrees of freedom? With colloidal matter we have the ability to imbue individual units

with properties that may propagate and be reflected in the emergent properties of their

resulting structure. This opens a path towards potentially programming features into an

emergent’s system internal degrees of freedom through the properties of their constituents.

However, this is not as straightforward as it seems as the physical principles that describe

the individual components of a material are not the same as those that describe its overall

emergent structure. Rather, the properties and response to external stimuli of materials,
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animate or inanimate, is the culmination of the correlations and dynamics of their internal

degrees of freedom, and they are not the same as those that describe the individual units.

Nonetheless, as already stated, colloids have been used to create colloidal matter, thus,

as a starting point we must understand why they are capable of forming collective matter

in the first place before entertaining the idea of designing the internal degrees of freedom

of colloidal matter for targeted responses.

Of the different forms of colloidal matter, I shall be focusing on colloidal crystals, as

different lattice symmetry groups will inform and impact a crystals emergent properties

and responses to external perturbations. Thus, if one of our objectives is to obtain de-

sign principles for a bottom up approach to materials design, understanding features that

control the formation of different colloidal crystal lattices is essential. In general, colloidal

crystals are formed in solution using nanometer to micrometer sized particle cores with a

grafted polymer shell. It is important to state that a characteristic energy scale in colloids

is the thermal energy of the fluid kBT which drives the thermal fluctuations of the sus-

pended particles, here kB is the Boltzmann constant and T is the absolute temperature

of the suspension. This thermal energy scale competes with the energetic interactions of

the colloidal solid. Usually, the energetic contributions are sufficiently captured through

pairwise interactions, thus, an important energy scale associated to the system is the

magnitude of pairwise interactions ϵ between particles. The general principles that gov-

ern this are the ideas of ergodicity and energy minimization. Ergodicity assumes that

the system is capable of visiting every state of its phase space, thereby permitting the

system to reach a state that minimizes its total energy which is mostly driven by the

particles’ attractive interactions. Colloidal Using the machinery of thermodynamics, as
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Figure 1.1. Different self-assembled colloidal crystals using a bidispersed
set of particles of different sizes grafted with hydrocarbon chains. This is
adapted from Bodnarchuk et al. [8].

colloidal crystals are comprised by hundreds of thousands of particles, we can determine

the system’s equilibrium configuration to be the state which minimizes its Helmholtz free

energy F

F = U − TS,

where U is its internal energy, T is its temperature, and S is its entropy. Given the form

of the function, we observe that F is a competition between the system’s internal energy

versus its entropy, which can be tuned by the system’s temperature. The internal energy

represents the sum of all possible interactions contained within the closed system, this

can be further decomposed into the following pairwise interactions: particle core - particle

core , particle core - polymer shell , and polymer shell - polymer shell. The interactions

may be repulsive or attractive. Meanwhile, interactions that contribute to the system’s

entropy are less straightforward as they usually deal with the total configuration of the

ensemble of particles, which for solids are usually vibrational and configurational (particle

packing), and cannot be easily represented by pairwise interactions between particles.
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Let us now analyze the internal energy contributions for the simple case of an ensemble

of metallic particle cores. Naturally upon close proximity, particle cores polarize due to

van der Waals interactions which will potentially drive particles to aggregate. We consider

the interactions to be pairwise, and that the magnitude of this attractive energy between

two particles ϵ(r) is dependent on the distance between the particle centers r. Particles

will have the potential to form a bound pair only if they get close enough such that

|ϵ(r)| ≳ kBT. But there is a Goldilocks problem here, if particles are able to come too

close into contact then they will become trapped in whatever configuration they are in and

the most likely configuration of the ensemble will be that of an amorphous solid as |ϵ(r)| ≫

kBT. On the other hand, if particles are not able to come into close enough contact then

|ϵ(r)| < kBT and a dispersed state will most likely be the favored equilibrium configuration

of the suspension. Thus, particles must be bound by interparticle interactions but not

too strongly as they need to reconfigure to reach the energy minimizing equilibrium state.

A common practice is to stablize colloids through the addition of a hydrocarbon polymer

shell their surfaces. This prevents colloids from aggregating randomly and forming an

amorphous solid. As the polymer shell adds a lower bound to interparticle separations,

particles cannot get close enough to randomly aggregate, therefore, they will be able to

reconfigure into a free energy minimizing equilibrium state. The formation of crystals

using this mechanism including nanodots has been summarized in the review article by

Murray et al. [9]. Finally, the previous energetic analysis can also be applied to other types

of attractive interactions among colloids. As we will see shortly, attractive interactions

between the polymer shells of different particles will lead to the formation of self-assembled

structures, equally motivated by the previous energetic principles.



32

Meanwhile, Bodnarchuk et al. [8] have reported the formation of a library of crystals

using ensembles of particles comprised of metallic cores and polymer shells of hydrocarbon

chains. However, they found that particles did not self-assemble due to the polarization

of the particle cores or any other attractive interactions. Given their concentration of par-

ticles, and the length of the polymers in the polymer shell, it was entropic maximization

that gave rise to the formation of the crystals. Their system showcases the complexity of

crystal engineering and lays bare the competition between the system’s internal energy

with its entropy. In crystal lattices, particles are capable of vibrating around their equi-

librium position unlike in a trapped amorphous state. Therefore, an ordered structure,

counterintuitively, maximizes entropy as particle configurations have space to fluctuate

around their lattice points [10, 11]. It is then apparent that what sets the symmetry of

such ordered structures is then the geometrical properties of the particle cores, such as

shape, size, and the ratio of particles of different sizes. In the same paper by Boles et

al. [8], they explore the crystal lattice phase space by varying the ratio and size of a

bicomponent system of particles, see Figure 1.1.

In order to expand the phase space of colloidal crystals and not be limited by the

geometric properties of the suspended particles, we must enhance their degrees of freedom.

One way of doing this is adding interparticle attractive interactions between colloids as

evidenced by the form of the Helmoltz free energy. Currently, the addition of attractive

potentials between colloids is mainly done by designing attractive particle core - particle

core interactions or polymer shell - polymer shell interactions [12, 13]. Much success

has been achieved by using the mutual attraction of particle cores by employing ionic

particles to form crystals [14, 15]. But using this method relies on our ability to tune
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Figure 1.2. Library of colloidal crystal lattices obtiained by varying the
geometric properties of the particles and DNA strand length and strength
of their grafted DNA chains. This is adapted from Laramy et al. [18].

the matter of which the cores are made of as opposed to the wide variety and tunability

of polymers which can be grafted on the surfaces of particles. We focus then on the

attractive interactions embedded in the particles’ polymer shells, in particular, in the

form of hydrogen bonding using single stranded deoxyribonucleic acid (DNA) [16, 17].
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The use of DNA in colloidal crystal engineering is useful considering that the strength

of the bond between complimentary strands can be tuned by adding or subtracting base

pairs. This hinges on an inherent and unique property of DNA: its specificity of pairing

between base pairs. Additionally, another advantage of using DNA is the weak and

physical nature of hydrogen bonding between the base pairs. If single strands grafted on

the surfaces of the particles are well designed, they will have many hybdridization events

(pair and unpairing) throughout the self-assembly proccess associated with the movement

of the particle cores towards an energetically minimizing equilibrium state [19]. As shown

by Laramy et al. [18], DNA self-assembled crystals not only span naturally occurring

crystal lattices seen in hard condensed matter systems, but also can form unnatural

crystals such as certain quasicrystals, see Fig. 1.2. The latter crystals are obtained

by tuning both the particle’s core shape and tailoring its DNA strands. Thus, colloidal

collective structures prove to be not only an an atomic analog of matter, but a playground

for the study of emergent properties thanks to the high tunability of colloids.

In chapter 2, I present work that has contributed to the field of DNA self-assembled

crystals. In this work, in collaboration with experimentalists, we show how we can aim for

different crystal lattices by increasing the aspect ratio of highly anisotropic particle cores

with grafted complimentary single stranded DNA chains. Interestingly, we found that by

increasing the aspect ratio of the particles, we enhanced DNA hybridization within certain

regions of the anisotropic particles, to the extent that these regions correlated with the

symmetry of the resultant crystal lattices. Although we employed anisotropic particles in

this work, we only studied systems of monodispersed particles. The bidispersed crystal

lattices presented in Figure 1.2 demonstrate that particle size and number ratio of the
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different particle sizes are other design knobs available for the formation of DNA self-

assembled colloidal crystals. Motivated by this, Girard et al. [20] demonstrated that for

particle number ratios of highly size-asymmetric particles with grafted DNA chains, they

obtained crystals in which the larger particles are situated in crystal lattice sites while

the smaller ones fill symmetric interstitial sites. They showed the appearance of different

crystal lattices by tuning the number ratio of large to small particles. Under certain

conditions, they found that the smaller particles are able to move in-between neighboring

interstitial sites while the larger particles remained at their lattice points, see Figure 1.3.

Girard et al. [20] suggested this to be analogous to the motion of electrons in simple

metallic solids. In chapters 3 and 4, in collaboration with Ali Ehlen (my life partner),

we create a simplified model of such size-asymmetric systems to further explore how far

we can take the analogy of colloidal electrons. In our work, we find correlations between

lattice vibrations and the enhancement of small particle diffusion. In our findings, we also

show that large particles occupy crystal lattice points while the small particles inhabit

symmetric interstitial sites. Additionally, we observe that small particle diffusion can

discontinuously increase as a product of crystal lattice transitions driven by increasing the

temperature of the system, similar to an insulator-to-metal transition in atomic systems.

The latter is also evidence of diffusionless or displacive crystal phase transitions governed

by the movement of the large and small particles upon variation the system’s temperature.

The latter body of work demonstrates how designing a suspension of interacting par-

ticles can lead to the formation of self-assembled crystals. The process of self-assembly is

simply the product of thermodynamic equilibrium, and it is beholden to events in which

particles come together and, later, clusters grow to eventually form a final equilibrium
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Figure 1.3. Size asymmetry matters in DNA self-assembled colloidal crys-
tals. If the particles are of equal size, there is negligible particle diffusion.
However, if there is strong size-asymmetry, the smaller particles will hold
the colloidal crystal but also diffuse among the larger particles, similar to
electrons in a simple metal. This is adapted from Girard et al. [20].

crystal structure. The information held by the suspending particles is constant or passive

throughout the self-assembly process. In general, once a component has found its place

in the crystal, it will likely remain there until perturbed by external stimuli. Lewis et

al. [21] have shown that DNA colloidal crystals can still behave elastically when indented

up to hundreds of kilopascals. But this still is far removed from polymeric solids and

sheets that have Young’s moduli of up to the tens of gigapascals [22, 23]. Although these

self-assembled crystals are fascinating in their own right and have been useful as atomic

analogs in order to gain a better understanding of hard condensed matter phenomena,

they do not have much functionality once formed. This should not be surprising consid-

ering the passive nature of the components of DNA self-assembled colloidal crystals. In a

sense, due to the lack of non-equilibrium phenomena based behavior of the components of

the colloidal crystal, this passivity will also be reflected in the internal degrees of freedom

of the crystal. There is then no reason to believe that these colloidal crystals will have
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properties or dynamical responses associated to living systems – much like how we do not

expect for a rock to talk. If we do want to imbue colloidal systems with a semblance of

adaptable behavior similar to living systems, the colloidal collective must have dynamical

internal degrees of freedom which can be manipulated and driven to different equilibrium

states without eroding the solid’s internal structure. Thus we turn our attention to sys-

tems that can be driven out of equilibrium, and in particular, using external magnetic

fields.

1.2. Driven colloidal systems, adaptability, and training

The current paradigm in materials science and engineering for materials design is based

on four principles: Process, Structure, Properties, and Performance [24]. A material is

processed or, rather, synthesized and will have a certain atomic structure. This structure

will translate into specific material properties that can be employed for some use. The

performance of this material will rely on its properties. The latter sequence of steps rep-

resents the bottom up approach for materials design but a top down approach can also

be employed especially when designing a material for a particular performance [25]. This

paradigm is not exclusive to atomic materials; we can easily see how this can be employed

for colloidal materials we have previously discussed. In the case of DNA self-assembled

colloidal crystals, the process involves both the synthesis of DNA functionalized particles

and their self-assembly process. Afterwards, the self-assembled crystal will present prop-

erties based on its internal structure. Depending on the properties of these crystals they

can potentially be applied for a certain task. Mainly they have been used in photonic

devices [6, 26, 27]. However, using colloidal materials, or soft matter in general, we can
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Figure 1.4. Modified material design paradigm with the inclusion of the
concepts from training in materials. Training involves the reconfiguration
of a material’s internal degrees of freedom.

enhance the current paradigm of materials design by introducing the concept of training

in materials [28], see Figure 1.4. This involves the reconfiguration of the material’s in-

ternal structure or degrees of freedom by subjecting it to physically desired behavior. In

this process the material adapts to the exposure of external stimuli by acquiring a new

equilibrium state. This will be evidenced by an evolving response to the external pertur-

bation, thus hinting at an answer of our second guiding question of this thesis. Usually, a

material is trained by repeatedly being exposed to the external stimuli until its response

is invariant to the training stimuli. In general, the concept of training had been reserved

for animate matter, here we have described its analogous process for inanimate matter.

But what are the requirements for a material to be trainable considering its lack of life?
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Trainable materials need to have internal degrees of freedom that can evolve over

different steady states, in this manner they can adapt to a training stimuli. Not only

that, this new steady state of the internal degrees of freedom must persist even after the

external perturbation is over. Therefore, for a material to be trainable it must be capable

of forming memory with respect to the non-equilibrium state of the internal degrees of

freedom when being stimulated. The evolution of the internal degrees of freedom are then

governed by the training perturbation, and their degree of relaxation or reconfiguration

after being driven out of equilibrium. The potential energy landscape of the degrees

of freedom must then have energy wells into which they can settle when being driven

out of equilibrium but not too deep nor too shallow such that they can be driven to

different states only by the external stimuli. The dynamics of the degrees of freedom

forces us to solve the system’s dynamical equations [29, 30] and prevents us from using

the theoretical machinery of equilibrium thermodynamics. Although we cannot solve for

all of degrees of freedom (roughly six times Avogadro’s number), we approximate and

assume that only a subset of degrees of freedom are trained during a training period.

For example, studies of non-Brownian granular systems have shown that only particle

reconfigurability is essential for robust memory formation [31–33]. Similarly, it has been

suggested that the brain’s ability to reconfigure and decrease its threshold/firing potential

in its connections among neurons reinforces and creates specific memories [34–36]. In both

examples there is an implicit mention of time in the driving mechanism that is producing

the configurational change. This I will call a training protocol. In glassy granular systems

the training protocol is cyclic oscillatory shearing in which a target shear strain γmem is

chosen and one cycle of the protocol is comprised of transitioning from γmem to −γmem [37,
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38]. The trained state or formed memory is then read out by measuring the mean squared

displacement (MSD) of the particles as of function of the shear strain that is imposed on

the system after training. As can be observed in Fig. 1.5, repeated training cycles will

reinforce the presence of a minimum of MSD at γmem, be it for either one (see Fig. 1.5a) or

two (see Fig. 1.5b) target shear strains. The mechanism that underlies the formation of

memory in this system is the appearance of periodic orbits of the particles as a function

of the training protocol for a given γmem [37, 38]. This indicates a reconfiguration of

the glass’s potential energy landscape by means of the training protocol. Motivated by

these findings, in chapters 5 and 6 we explore systems that are potentially trainable given

slight modifications. Both physical systems are driven out of equilibrium using external

mangentic fields, but the dynamics of their internal degrees of freedom are mediated

through different fields, elastic (chapter 5) and hydrodynamic (chapter 6). These systems

offer different modes of relaxation with respect to their respective degrees of freedom

which can potentially impact their trainability.

In chapter 5 we study, in collaboration with experimentalists, the magnetic actuation

of magnetoelastic sheets. In experiments, nanometer sized magnetic particles are func-

tionalized with oleic acid and later, through directed assembly, they are approximately

hexagonally packed on a plane. These magnetic monolayers are then actuated using ho-

mogeneous external magnetic fields, where the elastic response arises from the van der

Waals interactions among the strongly confined oleic acid chains. It is in the origin of

elasticity in these sheets where there is a strong potential for trainabilitiy so long the

chains can be reconfigured when actuated. In fact, I will briefly show this can be induced

under the right conditions in chapter 7, using both experiments and simulations. Also,
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Figure 1.5. An example of reading out memory embedded in glassy gran-
ular matter. By shearing a trained system sequentially and in an increas-
ing manner, a minimum is observed in the mean squared displacement
(MSD) of the particles at the value of γmem = 0.06 in (a) and values
γmem = {0.04, 0.06} in (b). The formation of minimum values or memo-
ries are reinforced as a product of the number of cycles. This is due to the
appearance of steady state particle periodic orbits due to the cyclic oscilla-
tory shearing. These graphs were adapted from Fiocco D. et al. [37].

to even be capable of training these sheets we must understand their mechanics in the

first place. For this, we turn to molecular dynamics and model the experimental sheets

by studying a triangulated mesh with an overall shape of a square. All nodes of the mesh

represent a single magnetic point dipole, while elastic interactions are imposed among the

nodes. Through these approximations we arrive at the following expression for the sheets’

internal energy U :

U = Uelasticity + Umagnetism,

Uelasticity =
∑
i,j

1

2
k(rij − r0)

2

︸ ︷︷ ︸
Stretching energy

+
∑
i

K(1− cos(θi − θi,0))︸ ︷︷ ︸
bending energy

,

Umagnetism =
∑
i

µ⃗i · B⃗ext +
∑
i,j

µ0

4πr3ij
(µ⃗i · µ⃗j − 3 (µ⃗i · r̂ij) (µ⃗j · r̂ij)) .

(1.1)
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Here, k is the spring constant between nearest neigborhing nodes, rij is the distance

between the ith and jth nodes, r0 is the equilibrium distance between the nodes, K is the

bending constant between two edge sharing triangular facets, θ is the angle between these

two edges, and θ0 is the equilibrium angle between the facets. Meanwhile for Umagnetism,

µ⃗i is the vector representing the magnitude and orientation of the ith point dipole, B⃗ext

is the external magnetic field vector, µ0 is the vacuum magnetic permitivity, and r̂ij

is the unit vector between the ith and jth dipoles. Additionally, in order to simulate

idealized versions of the experimental sheets, the model’s elastic parameters k and K are

calculated such that they are respectively proportional to the sheet’s Young’s and bending

moduli. As for the magnetic properties of the dipoles, we consider that all point dipoles

are described by indentical Langevin magnetization curves which are free of hysteresis.

This is motivated by the nanometric size of the experimental magnetic particles. Using

this model we are able to replicate experimental results and achieve a master curve that

correlates the amount of deflection in a sheet with the magnitude of a vertical external

magnetic field for both experimental and model sheets. This indicates that our model

accurately describes the experimental system. We then continue on to use this model to

explore training in these sheets. Relevant degrees of freedom for training in our system

would arise from its elastic parameters θi,0 , as I will later show in chapter 7. Surprisingly,

this is analogous to findings reported on biological systems, particularily in cell division

processes [39, 40] where the elastic parameters of a vertex model evolved over time in

order to avoid the cell from becoming fluid during mitosis.

Meanwhile in chapter 6, I present how a suspension of passive particles in water can

be reconfigured by a single driven particle even in the presence of thermal fluctuations.



43

As I have previously stated, this ability to reconfigure is essential for trainability. Here

the interactions among all particles are entirely hydrodynamic, and because they are all

of micrometer size, the dynamics of the fluid are well described by the Stokes equation:

−∇p + µ∇2u⃗ = F⃗ ,

where p is the fluid’s pressure, µ is the fluid’s viscosity, u⃗ is the fluid’s velocity, and F⃗

is the force acting on the fluid. This equation lacks the non-linear term characteristic of

the full Navier-Stokes equation. The lack of this non-linearity has enabled some semi-

analytical approaches to the Stokes equation to be feasible, specifically, the formulation

of a Green’s function. Under this approach, the solution for a point force can be obtained

from solving

−∇pPF + µ∇2u⃗PF = −F⃗ eδ⃗ (x⃗) .

The solution to this equation describes the perturbation of the fluid if a force point is

located at the origin, the Green’s function G(x⃗) propagates this perturbation throughout

the fluid to a point described by x⃗

u⃗PF(x⃗) =
1

8πµ

(
I

r
+

x⊗ x

r3

)
︸ ︷︷ ︸

G(x⃗)

·Fe

Using this solution we use G(x⃗− y⃗) to propagate the the stress σjk on the fluid emanating

from a continuous and smooth surface S(y⃗), representing a boundary or movable particle,

with the following integral

ui(x⃗)− u∞
i (x⃗) =

∫
S

Gij(x⃗− y⃗) (−σjknk)(y⃗)dS(y⃗)
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The solution of this integral thus provides the vector component i of the perturbative flow

ui(x⃗) at x⃗, relative to a background flow u∞
i (x⃗), due to the stresses arising from the body

of surface S. However, this integral is usually difficult to effectuate. A common approxi-

mation that is taken for perfectly spherical bodies is a multipole expansion with respect

to G(x⃗ − y⃗) in which |x⃗| ≫ |y⃗|. Different moments of this expansion are identified with

body forces, torques, and stresses of the spherical body. In essence, the latter serves as

the basis of the Stokesian dynamics method [41] for the simulation of spherical particles

through pairwise interactions. Using this method, and in collaboration with experimen-

talists, we observed the appearance of an emergent pattern of paerticles when a driven

particle continuously translated through a suspension of passive particles suspended in

water at room temperature. The emergent pattern is a manifestation of the hydrodynamic

interactions stemming from the translating particle. This opens pathway for trainability

in this system which so long an attractive interaction can be realized between particles

such that thermal fluctuations do not destroy the emergent pattern. I will discuss this

further in chapeter 7, and look at manipulation of single passive particles with sizes that

differ from that of the driven particle.

It is surprising that something as commonplace in complex animate systems as training

can be applied to inanimate systems. In materials, it is straightforward to track the

amount of training or adaptation by the change in the system’s internal energy over a

specified training period. This is unlike in animate systems where quantifying learning

has involved exams or presentations. Can quantifying and understanding training in

sythetic systems transcend inanimate systems and increase our understanding of memory

formation in living or biological systems [42]? And if we are being provocative, can
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trainable materials then become model systems for biological systems similar to how

colloidal materials are model systems to atomic matter? Time will only tell... In the

meantime, I present most of the work I have realized during PhD.
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CHAPTER 2

Self assembly of colloidal crystals using anisotropic particle cores

This work was a collaboration between members of Chad Mirkin’s and Monica Olvera

de la Cruz’s group. In this work I performed the simulations and contributed the theory

associated with this study. I was guided by Martin Girard and Monica Olvera de la Cruz.

The objective of this work was to quantify the impact of particle shape on DNA self

assembed crystal lattices as was initially put forth by OB́rian et al. [43]. Unlike atomic

systems, particles in colloidal systems can be synthesized to have different body shapes.

We exploit this feature and study, using experiments and simulations, how the geomet-

rical properties of the crystal subunits impact the lattice’s overall structure. Our system

consists of rhombic dodecahedra particles with tunable aspect ratios, these particles are

also grafted with DNA complimentaty strands. We observe that different crystal lattices

are obtained by varying the particle’s aspect ratio. Subsequently, this is understood by

the varying importance of different facets of the particle shape for DNA hybridization as

the particles’ aspect ratio is varied.

The following was originally published in the ACS Nano in 2018. It is reproduced here

with permission of the PUBLISHER.
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Controlled Symmetry Breaking in Colloidal Crystal Engineering with DNA

Christine R. Laramy, Hector Lopez-Rios, Matthew N. O’Brien, Martin Girard, Robert J.

Stawicki, Byeongdu Lee, Monica Olvera de La Cruz, Chad. A. Mirkin

2019, 13, 1412 – 1420

Reprinted with permission from:

ACS Nano 2019, 13, 1412-1420, DOI: acsnano.8b07027. Copyright 2018 American

Chemical Society.

https: // pubs. acs. org/ doi/ 10. 1021/ acsnano. 8b07027

with modified details.

ABSTRACT: The programmed crystallization of particles into low symmetry lattices

represents a major synthetic challenge in the field of colloidal crystal engineering. Herein,

we report an approach to realizing such structures that relies on a library of low symme-

try Au nanoparticles, with synthetically adjustable dimensions and tunable aspect ratios.

When modified with DNA ligands, and used as building blocks for colloidal crystal en-

gineering, these structures enable one to expand the types of accessible lattices and to

answer mechanistic questions about phase transitions that break crystal symmetry. In-

deed, crystals formed from a library of elongated rhombic dodecahedra yield a rich phase

space, including low symmetry lattices (body-centered tetragonal and hexagonal planar).

Molecular dynamics simulations corroborate and provide insight into the origin of these

phase transitions. In particular, we identify unexpected asymmetry in the DNA shell, dis-

tinct from both the particle and lattice symmetries, which enables directional, non-close

packed interactions.

https://pubs.acs.org/doi/10.1021/acsnano.8b07027
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2.1. Introduction

The ability to arrange colloidal particles into crystalline lattices with controlled spacing

and symmetry enables the construction of next generation materials.[44] In these materi-

als, particles represent tunable building blocks that can be engineered in composition and

structure, and assembled into sophisticated architectures with functionalities relevant for

fields ranging from optoelectronics to catalysis [44–47] One powerful strategy to imbue

these building blocks with chemical crystallization instructions, and thereby “program”

their organization, is to attach DNA molecules, as ligands, to their surfaces.[48–52] Over

two decades of research have yielded an optimized DNA design for this purpose, com-

prised of a rigid, double-stranded region near the particle surface and a solution-exposed,

single-stranded terminus (known as a “sticky end”).[53, 54] Watson-Crick base pairing

between sticky ends on adjacent particles drives crystallization through collective inter-

actions between particles, where the most favorable configuration often maximizes the

total number of hybridization events (known as the complementary contact model).[54]

Researchers have used this approach to program the formation of over 50 different crystal

symmetries and more than 500 different structures (e.g. same symmetry, but different

compositional building blocks or lattice parameters).[54–56] However, the majority of

these structures are high symmetry, cubic lattices, with dense particle packings.[54, 56,

57] As the symmetry of the lattice is reduced, the constituent unit cells lose symmetry

operators, typically through the introduction of new interaction modes, a decrease in

nearest neighbor interactions, or a change in relative particle orientations.[44, 45, 47] Ex-

perimental realization of these lower symmetry structures can be challenging,[44, 58] due

to the more complex set of crystallization instructions required to break the symmetry
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of interparticle interactions.[59] If successful, approaches to systematically and control-

lably reduce symmetry can provide an avenue to explore poorly understood areas of phase

diagrams and structure-function relationships, and can be used to engineer functional ma-

terial responses. For example, reduced symmetries are fundamental to the observation of

chiral optical responses, metamaterial behavior, and photonic band gaps in particle-based

lattices.

Recent experimental and theoretical work suggests that anisotropic building blocks

can be used to direct interactions and, when combined with the encoding capabilities of

DNA, provide access to structures not attainable with isotropic building blocks.[55, 60–

65] With this approach, the particle core acts as a template to arrange the DNA into a

conforming shell.[55, 64] Anisotropic shapes can thus encode spatially discrete, collective

DNA interactions localized along each facet or spatial region of the particle. The number,

geometry, and relative strength (i.e. the number of DNA molecules within each collective

interaction) of these “bonds” can be tuned to produce different symmetries.[54, 55, 64,

66] Furthermore, recent work shows that flexible DNA ligands can deform to enable

symmetries beyond those predicted by particle shape alone.[64, 66]

Realization of low symmetry lattices via this approach is dependent on the availability

of chemical syntheses that produce the desired shapes with sufficient uniformity and yield.

This is a challenge even for some of the most studied nanomaterial systems (e.g. noble

metals), due to the thermodynamic preference for highly symmetric products and the

poor understanding of symmetry breaking events.[67–70] Successful examples often result

from trial-and-error, where kinetic processes trap structures in local energetic minima

that are prone to subtle fluctuations in reaction conditions.[43, 69, 71, 72] Although
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significant advances have been made in the preparation of low symmetry particles,[44, 69]

realization of their full potential in programmable assembly requires access to a larger

library. In particular, it would be useful to have sets of structures, defined by general

shape, but with tunable aspect ratios. Such structures would increase our understanding

of symmetry breaking processes in colloidal crystallization and potentially access low

symmetry colloidal crystals.

Herein, we report a general approach to synthesize highly anisotropic nanoparticles

with tunable aspect ratios (ARs). Importantly, these particles can be modified with

DNA to explore the role of particle anisotropy in directing colloidal crystallization. As

a case study, a base shape of a rhombic dodecahedron is systematically elongated, which

enables the realization of broken symmetry lattices, including a body-centered tetragonal

(BCT) lattice and a hexagonal planar (HP) lattice. When paired with molecular dynamics

simulations, this platform enables one to probe the key factors that underlie a series of

anisotropy-driven phase transitions. Simulations accurately predict each phase and reveal

a symmetry breaking in the DNA shell that leads to the formation of the non-close packed

HP lattice.

2.2. Results

Robust syntheses for nanocrystals require precise control over the placement of mil-

lions of atoms.[73] One strategy to achieve this control is to spatiotemporally separate

homogeneous particle nucleation from heterogeneous growth onto existing particles, and

thereby improve control over each step.[73] In this “seed-mediated” approach, a pre-formed
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Figure 2.1. A rod-based seed-mediated synthesis can be used to generate
elongated rhombic dodecahedra with tunable ARs. (a) Schematics show
a seed-mediated synthesis with a sphere or a rod seed and their resultant
products. Green indicates an elongated side facet, and purple indicates a
tip facet. (b) Seed AR and different [seed]:[Au3+] ratios can be used to tune
product AR. The algorithmic analysis of several hundred nanoparticles per
sample from transmission electron microscopy (TEM) images can be used
to quantitate this relationship. (c) Representative TEM images show seed
and product particles that correspond to the colors in the plot in (b). The
scale bar represents 100 nm.
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particle surface (i.e. “seed”) is separately nucleated and added to finely tuned, mildly re-

ducing growth solutions, such that the seed acts as a preferential site for heterogeneous

nucleation.[43, 74–76] In many cases, this approach enables one to preferentially guide

particles toward a single product with high uniformity and yield.[73] Furthermore, the

structure of the nanoparticle seed can be used to direct the growth of the nanoparticle

product.[77–79] Inspired by this work, one can envision a nanoparticle synthesis platform

where the shape of a seed can be used to initiate symmetry breaking (rather than re-

lying upon poorly understood and controlled nucleation events) and to manipulate the

anisotropy of the nanoparticle product.

An ideal low-symmetry particle seed should be accessible in high yield with broadly

tunable anisotropy (Figure 2.1a). For this purpose, we chose the well-studied synthe-

ses for single crystalline Au rods, a particle in which symmetry is broken along a single

axis.[71] The anisotropy of these particles can be defined by the ratio of the rod length

divided by the rod diameter (i.e. AR), and directly measured via electron microscopy

(EM). The shape and size of the particles (seeds and products) can be analytically deter-

mined for hundreds of particles per sample via algorithmic analysis of EM images in order

to approximate population-level statistics.[79, 80] The electronic structure of these par-

ticles further enables structural changes to be measured via UV-Vis spectroscopy, where

the broken symmetry manifests in two, spectrally separated localized surface plasmon

resonances (LSPRs), which correspond to each dimension.[73, 75]

Several syntheses exist to control the AR of single crystalline Au rod seeds through

the inclusion of different amounts of shape-directing additives (e.g. Ag+). However,

these syntheses simultaneously change both particle length and diameter.[79, 81, 82] An
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ideal platform to control seed AR would permit control over length, while holding the

diameter constant (or vice versa). One strategy to achieve such control could begin with

high AR rods and selectively remove material from their tips; an approach previously

demonstrated via the addition of an oxidizing agent (e.g. Au3+ salt).[79, 83] Importantly,

EM of AR=8 rods etched to different extents enables access to rods of ARs down to

4.4, while maintaining the uniformity and diameter of the original particles. Starting the

etching process with a lower AR rod ( 3.4) similarly afforded access to a range of low ARs

down to 1.7.

To study the impact of seed anisotropy on product anisotropy, Au rods with the same

diameter, but different ARs, were added to a seed-mediated synthesis that conventionally

produces Au rhombic dodecahedra, a particle with twelve equal rhombus faces. While

this synthesis has been shown to primarily yield a single product from single crystalline

Au spherical seeds, it was uncertain whether the trace amount of Ag or the different

faceting/surface curvature of the rod seeds would result in multiple products or impact

the resultant shape. EM and UV-Vis revealed the formation of anisotropic products that

resembled elongated rhombic dodecahedra. More specifically, facets adjacent to the axis

of four-fold symmetry remained fixed in surface area and formed the “tips”, while the four

remaining facets (at 90 degrees to this axis) elongated and increased in surface area (Figure

2.1a). Algorithmic image analysis of hundreds of particles confirmed the formation of this

single product in > 95% yield by shape, as fit to an elongated hexagonal cross-section

in EM image analysis (Figure 2.1b, c). The AR of the elongated rhombic dodecahedra

directly correlated with the AR of the seeds (Figure 2.1b, c) and an EM image tilt series

of products grown from the highest AR seeds revealed a consistent elongated rhombic
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dodecahedron shape, with the preservation of a square cross-section along the four-fold

symmetry axis. Importantly, the introduction of rod seeds into several other syntheses

for anisotropic shapes (e.g. concave cubes, ditetragonal prisms) yielded similarly shifted

LSPRs and elongated products, in support of this as a platform-type approach.

The anisotropy of elongated particles can be further tuned by varying the ratio of

rod concentration to Au concentration in the growth solution, with higher ratios leading

to more anisotropic products (Figure 2.1b). With this approach, products from a single

rod seed can be tuned by up to a factor of two in AR (here defined as the longest edge

length divided by the shortest) and a factor of 3 in minor edge length. In totality, both

approaches enabled realization of a library of elongated rhombic dodecahedra that span

from a regular rhombic dodecahedron with an AR, by definition, of 1.15 to the most

anisotropic with an AR=9, with similar minor edge lengths.

Synthetic access to this library of elongated rhombic dodecahedra, with precise control

of particle anisotropy, allows one to probe the effects of AR on colloidal crystallization

with DNA. In principle, the ability to systematically manipulate AR allows one to probe

the symmetries that form before, throughout, and after a phase transition. By mapping

the boundaries of the transition, one can gain experimental insight into why particular

phases occur in order to gain greater predictive power. Therefore, elongated Au rhombic

dodecahedra with ARs spanning from 1.15 to 9 (1.1, 1.6, 2.0, 2.8, 3.5, 4.3, 5.0, 9.0),

and minor edge lengths that differed by no more than 10 nm, were functionalized with

thiol-modified DNA according to literature protocols (Figure 2.2a, b).[84, 85]

The extent to which an anisotropic building block displays directional interactions

arises from an interplay between the shape of the particle core and the structure of the
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Figure 2.2. Elongated rhombic dodecahedra building blocks crystallized
into multiple lattice symmetries. (a) As the AR of building blocks increases,
the surface area (and thus number of DNA molecules) on elongated (green)
facets increases, while the surface area of the tip (purple) facets remains
the same. (b) TEM images show elongated rhombic dodecahedra before
functionalization with DNA. From left to right these particles have a minor
edge length and corresponding coefficient of variation (CV) and AR of: 30.4
± 2.4 nm (8.0% CV) and 1.1; 20.9 ± 1.4 nm (6.6% CV) and 1.6; 22.3 ± 1.2
nm (5.4% CV) and 2.8; 26.2 ± 1.9 nm (7.2% CV) and 4.3; 21.5 ± 2.4 nm
(11.3% CV) and 5.0; 16.2 ± 2.4 nm (14.6% CV) and 9.0, as determined by
algorithmic analysis of TEM images. The scale bar represents 100 nm and
corresponds to all images in (b). For a complete list of synthetic conditions
and particle dimensions. (c) Z-contrast TEM images show crystals formed
from the elongated rhombic dodecahedra in (b). Images corresponding to
ARs of 1.6, 4.3, 5.0, and 9.0 were sectioned (section thicknesses of 200,
400, 400, and 400 nm, respectively) to facilitate imaging. The scale bar
represents 100 nm and corresponds to all images in (c). (d) Simulations
show crystals of elongated rhombic dodecahedra with ARs that correspond
to those in (b, c) (left to right: ARs of 1.15, 1.65, 2.85, 4.5, infinite).
Images are cut through particles along the closest-packed plane and include
the DNA beads that represent the sticky ends. (e) Indexed SAXS patterns
correspond to the crystals in (c). From left to right, patterns index to FCC,
pFCC, disordered FCC-like, BCT, mixture of BCT and HP, and HP. (f)
Unit cells were determined from the corresponding SAXS patterns and EM
images. Transparent unit cell box (gray) indicates a plastic crystal. The
color bar indicates the series of phase changes.
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DNA. As the DNA increases in length, it can become more flexible, splay, and obscure

particle anisotropy.[64] Therefore, the DNA was designed to be short and rigid enough

to preserve the directional interactions templated by the underlying particle. This DNA

design was kept constant for all particle cores in order to isolate the role of particle

anisotropy (SI Table S5). A self-complementary DNA sticky end sequence was utilized,

such that all particles could hybridize to each other. In order to remove kinetic traps

and study the thermodynamically-preferred state of DNA-assembled particles, samples

were heated above their collective DNA hybridization temperature and slowly cooled to

room temperature (0.1◦C/10 min).[86] Subsequently, the structure of these assemblies was

directly visualized via EM and probed via small angle x-ray scattering (SAXS).[87] Since

EM requires in vacuo conditions, aggregates were transferred to the solid state through a

previously reported method shown to preserve the solution-phase structure.[88] Further

embedding of these solid state aggregates in a polymer resin allowed the samples to be

cut into 200 – 400 nm sections to visualize particles within lattices.[54]

Rhombic dodecahedra possess 12 facets of equal surface area and thus are capable of

12 equally strong, directional DNA interactions.[55, 64] Based on shape, at the lowest

AR (1.15), one would thus expect a face-centered cubic (FCC) crystal symmetry, where

the 12 directional interactions enable hybridization to 12 nearest neighbors.[55, 64] An

increased facet surface area, as seen for the elongated rhombic dodecahedra, should contain

a proportionally greater number of DNA molecules (assuming that each facet can be

functionalized with a comparable DNA density). Consequently, the DNA along elongated

side facets should be able to engage in a greater number of total DNA hybridization events

and thereby exhibit an increased collective DNA “bond strength.”[55] Thus, elongated
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rhombic dodecahedra should be capable of four equal, directional DNA interactions on

each tip and four directional interactions that increase in strength as the AR increases.

EM and SAXS of crystals formed from this library of elongated rhombic dodecahedra

revealed the formation of several phase transitions (Figure 2.2). Both techniques confirm

that the control sample, a rhombic dodecahedron, formed the expected FCC lattice (Fig-

ure 2.2b, c, e, f). As the symmetry of the rhombic dodecahedron breaks and particles

begin to elongate (AR of 1.6), the SAXS peaks broaden, but their positions remain corre-

lated with a FCC symmetry (Figure 2.2e). If all of the particles were uniformly oriented

along their long axes, it would not be possible to maintain a cubic unit cell. Thus, parti-

cles must orient irregularly to maintain face-to-face alignment with neighboring particles

(i.e. the long axes of each particle differ in orientation throughout the crystal, but are

randomly rotated in 90◦ increments to align facets; Figure 2.2f). EM images confirm this

plastic FCC (pFCC) lattice (Figure 2.2c; plasticity here refers to the irregular orientation

of the particles). The loss of orientational order likely causes the increased SAXS peak

breadth (Figure 2.2e). As the AR of the particles continues to increase (AR of 2.0 to 2.8),

particles further lose order in the formation of a disordered FCC-like structure. Above

this AR (AR of 3.5 to 4.3), SAXS indicates the formation of 2D lattices with square in-

plane arrangements (indexed peaks in Figure 2.2e), and EM images reveal BCT lattices

where up to 5 planes are in registry (Figure 2.2c, f). The absence of the expected 00l

reflections for a BCT lattice likely results from the limited extent of three-dimensional

growth. For crystals with few “layers”, these SAXS peaks would be broad and have a sig-

nificantly lower intensity than peaks that correspond to in-plane ordering (Figure 2.2e).

Most interestingly, a phase transition is observed as AR increases further (AR of 5.0 to
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9.0), from the expected BCT lattice, to a mixture of BCT and HP lattices (AR of 5.0),

and then to solely a HP lattice (ARs of 5.0 to 9.0; Figure 2.2b, d, e, f). Throughout

this phase transition, particles consistently orient in a face-to-face fashion with respect to

their neighbors, but the angle of this orientation shifts from 90◦ to 60◦.

Under the hypothesis that anisotropic particles create directional interactions perpen-

dicular to their facets, these phase transitions, and notably, the formation of a HP lattice

are not intuitive. At higher ARs, one might expect that particles would crystallize sim-

ilarly to rods, which form primarily planar lattices.[55] In particular, one would expect

the square cross-section of elongated rhombic dodecahedra to dictate only four in-plane

neighbors (i.e. square in-plane symmetry) and the potential for inter-plane registry due

to face-to-face interactions of the tips (i.e. a BCT symmetry if planes are in registry).

However, there are limited experiments, simulations, or models in the literature that can

be used to predict (or explain) the expected crystallization behavior of the elongated

rhombic dodecahedron shape. Indeed, the closest example simulates the densest packing

of rectangular prism-shaped particles (without any ligands) and finds that the four-fold

symmetry of the particle’s long axis should drive square in-plane arrangements, in line

with current understanding.[89, 90] The divergent behavior observed in our system sug-

gests that the exact shape of the particle, or the nature of the attached DNA shell, causes

deviations from this densest packing behavior. Thus, we turned to molecular dynam-

ics (MD) simulations to provide more insight into the origin of the BCT to HP phase

transition.
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MD simulations can aid in understanding phase transitions in colloidal crystal en-

gineering with DNA through the explicit simulation of DNA interactions between par-

ticles.[54, 91, 92] Each particle can be modeled based on experimental inputs for both

particle shape and DNA density.[64] DNA can be similarly modeled based on experimen-

tal inputs, as a chain of beads with mechanical properties analogous to regions of single-

or double-stranded DNA, with a terminal region of beads programmed to act as sticky

ends.49 Due to computational limitations, particle size and DNA length were proportion-

ally scaled down relative to experimental inputs to enable simulation. MD simulations use

these models to evaluate the stability of different crystal symmetries by initializing parti-

cles in positions that correspond to a particular lattice and then allowing them to relax to

their lowest energy state. This modeling strategy has been used previously to accurately

predict the DNA-driven crystallization behavior of anisotropic building blocks.[64, 91]

Simulations with these particle models predicted all experimentally observed phase

transitions at corresponding ARs up to an AR of 4.5, with the exception of the disordered

region (Figure 2.2d). Prediction of disordered regions can be particularly challenging for

this type of simulation. Since particles begin in an ordered lattice, simulations mitigate

the formation of any kinetic traps that may prevent the experimental realization of ordered

structures. Despite this disparity, simulations show a phase transition occurring near an

AR of 2.5, analogous to experimental results. Particles with ARs between 3.5-4.5 were

initialized in either BCT or FCC lattice positions and allowed to equilibrate. FCC lattices

represent three-dimensional analogs of the experimentally observed HP lattice. Within

this AR range, all particles initialized in a FCC lattice rearranged into a BCT lattice upon
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relaxation. Conversely, those initialized in a BCT lattice remained stable upon relaxation,

as expected.

Above an AR of 4.5, explicit modeling of building blocks exceeded computational

capabilities due to the large number of DNA molecules required for an accurate represen-

tation. As a result, particles with an AR > 4.5 were modeled as infinite square prisms

(i.e. without the tip facets, Figure 2.2d). This representation reduces computational re-

quirements, because it allows for the simulation of only a single layer of particles, and is

reflective of experimental observations, where predominantly planar crystals are observed.

Interestingly, infinite square prisms (approximations for AR > 4.5) initialized in square,

analogous to a single layer along the (00l) of the experimentally observed BCT structure,

or hexagonal arrangements both remained stable. To understand the thermodynamic

preference between BCT or HP lattices for high AR, we analyzed the number of DNA

hybridization events between particles in each lattice and used this to calculate a potential

energy per particle, with lower energies suggestive of more stable arrangements. Particles

initialized in a HP lattice resulted in lower potential energies per particle than those in a

square lattice, as seen in experiments.

To explain the phase transition from BCT to HP lattices, we used MD simulations

to analyze the number and location of DNA hybridization events between particles (i.e.

on an elongated side or tip facet) for different AR particles (Figure 2.3a, b). As the AR

increases, the ratio of hybridization events on elongated side facets relative to tip facets

increases (Figure 2.3a). In other words, in-plane particle interactions become increasingly

dominant over out-of-plane interactions, likely due to the greater surface area, and thus

number of DNA molecules per facet. If only in-plane hybridization events are considered
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Figure 2.3. Analysis of the number and location of DNA hybridization
events for high AR particles. a Models show the DNA hybridization proba-
bility mapped to the particle surface based on simulations initialized in their
most stable lattice (FCC, FCC, BCT, BCT, HP lattices, respectively). Each
point on the particle represents a bead that may have DNA attached. The
darkest color indicates the maximum ( 0.84) and the lightest color indicates
the minimum ( 0.17) probability that the DNA attached to the bead hy-
bridizes to DNA on an adjacent particle. The color scale corresponds to
all models. b Analysis of the average DNA angle with respect to the sur-
face normal vector is shown for an infinite rectangular prism initialized in a
square planar (SP) vs. HP lattice. The HP plot corresponds to the model
in a for the infinite rectangular prism. Dashed lines indicate the location
of corners. Error bars represent the standard error determined from the
angle of DNA with respect to the reference vector for strands attached to
32 different beads in the same position along x over 80 discrete time steps
(at equilibrium). c Sectioned EM images (section thicknesses of 400 nm)
show BCT and HP lattices. (top) EM images show sections cut across the
square cross-section of the particles (approximately parallel to the lattice
plane). (bottom and right) EM images show sections cut approximately
perpendicular to the lattice plane. EM images for particles with AR=4.3
show lattices with multiple layers in registry, while images for particles
with AR=5.0 show multi-layer and single-layer lattices, and images of lat-
tices formed from AR=9.0 particles show primarily single layers. Scale bars
represent 200 nm.
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for the same particle, the HP symmetry enables more hybridization events per particle

than the BCT lattice. Indeed, simulations of infinite square prisms (an extreme case

where tip, or out-of-plane, interactions are completely removed) verify this hypothesis.

Furthermore, the four-fold symmetry of the particle tips matches the symmetry of inter-

plane interactions within a BCT lattice, thereby enabling face-to-face interactions and

likely a greater number of DNA hybridization events. In contrast, the symmetry mismatch

between the particle tips and the HP lattice would disrupt such interactions. Therefore,

tip interactions are likely key to the stabilization of the BCT lattice. These results suggest

that once particles exceed a threshold AR, the energetic benefits of DNA hybridization on

elongated side facets in the HP lattice begin to dominate the benefits of DNA hybridization

on both elongated side and tip facets in the BCT symmetry. Sectioned EM images cut

along different lattice planes support this conclusion (Figure 2.3c). For AR=4.3, these

images reveal registry between multiple layers, while for AR=5.0 the number of layers

decreases, and for AR=9.0 the images show primarily single layer structures.

To understand how a particle with a square cross-section breaks symmetry to engage

in six nearest neighbor interactions while remaining oriented, we used MD simulations

to examine the spatial distribution of sticky ends between particles (Figure 2.3a, b).

Interestingly, along each elongated side facet, the DNA shell breaks symmetry to form

two directional interactions – a primary face-to-face interaction comprising the majority

of the DNA and a secondary face-to-face interaction involving the near-edge DNA (Figure

2.3a, b). This secondary interaction enables 66% of the simulated edge DNA to hybridize

for a HP lattice, compared to only 17% for a SP lattice. Symmetry breaking of a DNA

shell along a facet has been observed once previously, for cubes, where the DNA on a
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single facet split into four equal face-to-face interactions as the DNA length increased.[64]

In the work reported here, the symmetry breaking is distinct in the following respects:

1) the DNA shell is asymmetrically split along the facet different from both the particle

(i.e. four-fold symmetry) and the lattice symmetries (i.e. six-fold symmetry), 2) a face-

to-face interaction comprised of near-edge DNA is stabilized, and 3) the phase transition

arises from an increase in particle AR, rather than in DNA length. This asymmetric split

increases the number of DNA hybridization events between particles and likely decreases

the repulsion between adjacent DNA molecules by increasing the separation distance. As

a result, DNA ligands are able to drive the formation of a non-close packed hexagonal

lattice that may not be predicted by densest packing simulations that account only for

particle shape.

2.3. Conclusions

The ability to tune the anisotropy of nanoparticles represents a strategy to access

lower symmetry lattices and to stabilize non-standard directional interactions (i.e. near-

edge face-to-face). Exploration of this phase space reveals a phase transition driven by

symmetry breaking of the DNA shell, which is induced by particle anisotropy. Impor-

tantly, this insight would not have been possible without precise, systematic control of

a particle structure library. Going forward, the synthetic approach used here could be

similarly applied to other broken symmetry particles, based on seeds comprised of one-

dimensional rods (as shown here), two-dimensional plate-like particles (e.g. circular disks,

triangular prisms), or three-dimensional polyhedra, or used in multi-step syntheses to cre-

ate branched structures. These approaches should enable access to structures that have
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yet to be synthesized or modeled and can be used as building blocks in crystal engineer-

ing with DNA. Such libraries of building blocks would offer insight into phase transitions

that lead to low-symmetry lattices and would continue to push the boundaries of acces-

sible lattice symmetries. The resulting low-symmetry lattices could be used to study and

unlock access to additional metamaterial properties or afford control over optoelectronic

functionality.

2.4. Methods

2.4.1. experiments

Materials. The following reagents were purchased from Sigma Aldrich and used as re-

ceived: sodium borohydride (NaBH4, > 99%), tetrachloroauric acid trihydrate (HAuCl4×3H2O,

> 99%), L-ascorbic acid (AA, > 99%), silver nitrate (AgNO3, > 99%), potassium bro-

mide (KBr, > 99%), dithiothreitol (DTT), concentrated hydrochloric acid (HCl, 37%),

potassium cyanide (KCN, > 96%), and sodium chloride (NaCl, > 99%). The following

reagents were purchased from bioWorld and used as received: cetyltrimethylammonium

bromide (CTAB, > 99%) and cetylpyridinium chloride monohydrate (CPC, > 99%). The

following reagents were purchased from TCI America and used as received: sodium oleate

(> 97%).

Au Seed Synthesis. Au seeds (spheres and rods) with aspect ratios of 1, 3.4, and 8

were synthesized as previously reported.[81] The aspect ratio of rod seeds was tuned via

addition of different amounts of [Au3+] and subsequent etching over 4 h at 40◦C. See

Supporting Information for amounts and resultant aspect ratios.
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Au Elongated Nanoparticle Synthesis. Au products were synthesized through modifi-

cations to previously reported syntheses to incorporate seeds of different sizes and aspect

ratios.[79] See Supporting Information for seed and reagent quantities and resultant par-

ticle statistics.

EM Image Analysis. Particle structure was analyzed through algorithmic analysis

of EM images to directly measure particle edge length, aspect ratio, corner rounding,

and shape yield as previously reported.[80] For structural measurements, at least 100

nanoparticles were analyzed in images taken from diverse areas of the EM grid. For yield

calculations 1,000 nanoparticles were analyzed. See Supporting Information for statistical

measurements of particle structure, representative EM images, and post analysis EM

images where the structure of particles has been fit.

DNA Synthesis. All DNA sequences were synthesized on a solid-support MM48 syn-

thesizer (BioAutomation) with reagents purchased from Glen Research. The resultant

DNA, synthesized with a 5’ trityl group, were cleaved from the support according to

Glen Research procedures. DNA was purified using reverse-phase high-performance liquid

chromatography (RP-HPLC; Agilent) and subsequently deprotected following standard

procedures. The molecular weight of the DNA was confirmed with matrix-assisted laser

desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Extinction co-

efficients for DNA were determined using IDT’s “Oligonucleotide Analyzer” tool and UV-

Vis spectroscopy measurements were used to determine DNA concentration. DNA was

aliquoted in small volumes, dried, and kept at 2-8◦C until use. See Supporting Information

for DNA sequences.
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DNA Functionalization. Nanoparticles were functionalized with 3’ thiolated DNA

according to previously reported procedures.[85, 93] After washing via three rounds of

centrifugation and replacement with fresh buffer (0.5M NaCl, 0.01M phosphate buffer,

0.01 wt. % sodium dodecyl sulfate), DNA functionalization density was confirmed by

liberating DNA strands through dissolution of the Au nanoparticle core with 150 mM KCN

for 1 h at 40◦C. Serial dilution of a solution of fresh DNA and KCN was used to create

a standard curve from UV-Vis spectroscopy measurements to determine an extinction

coefficient. After dissolution, each sample was measured with UV-Vis to determine the

concentration of DNA. Comparison of this with an estimate of particle concentration and

surface area yielded a surface density. See Supporting Information for details of these

estimations and resultant DNA ligand density.

Superlattice Assembly. Nanoparticle superlattices were synthesized following previ-

ously reported methods with final nanoparticle to DNA linker ratios of 25,000 DNA

molecules per particle or 50,000 molecules per particle and 0.5 M NaCl or 0.35 M NaCl.21

See Supporting Information for data not included in the text.

Transfer of Superlattices to Solid State. Superlattices were encapsulated in silica fol-

lowing previously reported procedures.[88] In order to prepare superlattices for sectioning,

silica-encapsulated samples were further embedded in a polymeric resin (Embed 812, Elec-

tron Microscopy Sciences) following previously reported procedures.11 Resin-embedded

samples were then microtomed into 200 nm (lattices comprised of particles with an as-

pect ratio of 1.6) or 400 nm (all other lattices) thick sections in order to visualize particles

within the lattice with electron microscopy.
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Electron Microscopy. Transmission electron microscopy images of Au nanoparticles

were collected using a Hitachi 8100. Scanning electron (SE) and Z-contrast mode images

of superlattices were collected using a Hitachi HD2300 STEM.

SAXS Measurements. Solution phase samples were transferred to a 1.5mm quartz

capillary tube. SAXS measurements were collected at the Dupont-Northwestern Dow

Collaborative Access Team (DND-CAT) following previously reported methods.[94]

2.4.2. simulations

DNA-Nanoparticle Models. All nanoparticles were comprised of spherical beads, which

remained bare, had an “anchor” DNA attached, or had a “linker” DNA strand attached.

The DNA surface density was constant across all systems and consistent with experimental

values. Moreover, effective interaction parameters, developed by Li et al.[91] and later

modified by O’Brien and Girard et al.[64] were used to establish interactions between

particles, including an attractive pairwise force between DNA sticky ends.

MD Simulations. All particle models were initialized in an ordered lattice and allowed

to relax and equilibrate. The equilibration period was implemented using NPT integration

as in HOOMD-blue.[95, 96] Particle models with ARs < 4.5 were initialized in both FCC

and BCT lattices. Infinite rectangular prism models were initialized in both SP and HP

lattices. A detailed description of the infinite rectangular prism model is included in

the Supporting Information. Every simulation contained the same number of periods of

Bravais lattices. See Supporting Information for additional simulation results.
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CHAPTER 3

The nature of colloidal crystal delocalization in a size-asymmetric

system

This work was a collaboration between Ali Ehlen and I. We both performed and

analyzed simulations and wrote the paper. In this paper we further explore how size

asymmetric particles within DNA self assembled crystals may become delocalized and

still be capable of stablizing the crystal struture. This system was introduced by [20]

where he posited particle behavior to that of electrons in simple metallic solids – nuclear

cores among a sea of electrons. Here we create a simplified model of such systems to study

what is the nature of particle delocalization within these colloidal crystals. The crystal

are comprised of a bidispersed mixture of small and large particles. Here, we only focus

on a 1:6 particle number ratio of large to small particles, and tune the attractive strength

of the particles to observe how small particle delocalization is affected by the system’s

temperature. This leads us to study the competition between the internal energy and

entropy in a direct manner.

The following was originally published in the Journal of Physical Chemistry C in 2021.

It is reproduced here with permission of AUTHORS, and the PUBLISHER.

Supplementary material associated with this chapter can be found in Appendix A.
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ABSTRACT: Sublattice melting is the loss of order of one lattice component in binary

or ternary ionic crystals upon increase in temperature. A related transition has been

predicted in colloidal crystals. To understand the nature of this transition, we study

delocalization in self-assembled, size asymmetric binary colloidal crystals using a general-

ized molecular dynamics model. Focusing on BCC lattices, we observe a smooth change

from localized-to-delocalized interstitial particles for a variety of interaction strengths.

Thermodynamic arguments, mainly the absence of a discontinuity in the heat capacity,

suggest that the passage from localization-to-delocalization is continuous and not a phase

transition. This change is enhanced by lattice vibrations, and the temperature of the

onset of delocalization can be tuned by the strength of the interaction between the colloid

species. Therefore, the localized and delocalized regimes of the sublattice are dominated

by enthalpic and entropic driving forces, respectively. This work sets the stage for fu-

ture studies of sublattice melting in colloidal systems with different stoichiometries and

lattice types, and it provides insights into superionic materials, which have potential for

application in energy storage technologies.

http://pubs.acs.org/articlesonrequest/AOR-8UNXPU6QS5KATYESGAJA 
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3.1. Introduction

Binary colloidal systems, which have interspecies attraction and intraspecies repul-

sion, have been shown to self-assemble into a wide variety of binary lattices [8, 15, 97–99].

Generally, if the two colloid species are of sufficiently different sizes, the larger colloids

will form a lattice while the smaller colloids occupy interstitial sites [14, 20, 100, 101].

In these size asymmetric colloidal systems, many cubic and non-cubic crystals have been

detected, including a Frank-Kasper phase [20]. However, under certain conditions, the

small particles may delocalize and roam around the crystal while the large particles re-

main in lattice sites; this is called sublattice melting. Previously, this behavior had been

seen primarily in atomic systems, in materials termed superionics [102–104], where one

ionic species delocalizes while the other stays fixed in a lattice. However, recent work has

demonstrated sublattice melting in assemblies of hard spheres under pressure [100, 101],

oppositely charged colloids with a Debye-Hückle potential [105], and colloids functional-

ized with sticky DNA chains [20]. The surprising loss of order of only the sublattice also

resembles behavior found in metals. In this analogy, the small particles map to delocal-

ized electrons and the large particles to fixed nuclei. Given the unique physical nature of

this phenomenon in colloidal systems and the seeming generality of the colloidal crystals

that exhibit it, we seek to understand the origin of colloidal sublattice melting using a

simplified molecular dynamics (MD) model, which can provide insight into a range of

systems.



72

To calculate reliable thermodynamic and physical quantities of delocalized systems,

we developed a scalable MD model. This simplified model enables us to generalize previ-

ous work that predicted delocalization in systems of DNA-functionalized gold nanoparti-

cles [20], where the interactions between colloid species were due to DNA hybridization,

which is directional and specific. However, the experimental design also included addi-

tional free DNA chains that may have acted as depletants. To avoid complications related

to DNA hybridization and to explore the generality of the phenomenon, the pairwise in-

teractions in our model are isotropic and short-range.

The generality of this model also enables us to apply it to a wide variety of sys-

tems. This encompasses, for example, nanodots with thiols and end terminal attractive

groups [106, 107], functionalized nanoparticles with light activated interactions [108, 109],

and nanocomposite tectons [110–112]. In fact, nanocomposite tectons would be an ideal

system for experimental verification of this study, because the parameters of the system

reported in the present work can correspond to metallic nanoparticles functionalized with

hydrocarbon chains with short ranged and strong complementary molecular binding pairs.

Lastly, with this model, we can start to address questions that have been posed about

sublattice melting in superionic materials [113, 114] such as the origin of the sublattice

melting transition. However, superionic materials are constrained by the requirement

of charge neutrality per unit cell, but colloidal crystals (and this model) have no such

constraint.

In this paper, we study the localized-to-delocalized transition in functionalized, size

asymmetric colloidal crystals. We explore the order of this transition with respect to

temperature and by varying the number of chains per small particle (4, 6, 8, and 10



73

Figure 3.1. The simplified model. (A) The smaller colloid (purple) func-
tionalized with chains (white) and larger colloid (turquoise) in our system,
to scale. All beads have excluded volume based on their radii, and there
is an attractive interaction between the large particles and the interactive
ends of the small particle chains (orange). (B) Pair potential U(r) between
the centers of the large particles and the interactive chain ends. The high-
energy region r < 10 nm represents excluded volume interactions, and the
small potential well accounts for the attractive interaction. The value of U
at the minimum is -4.1 kJ/mol.

chains per small particle). We focus on a system composition of 6 small particles per large

particle ("6:1 ratio"), because at this composition, the large particles form a stable body

centered cubic (BCC) lattice over a wide temperature range. Though other compositions

exhibit interesting symmetry changes with temperature and number of chains, we use the

6:1 ratio to study the nature of the localized-to-delocalized transition without the added

complexity of a change in the large particle lattice.
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An image of the model is shown in Figure 3.1A. The larger colloidal species is rep-

resented by a single sphere (shown in turquoise). The smaller species is represented by

a small sphere (shown in purple) grafted with a variable number of self-avoiding chains

(shown in white). The only interactions in the system are excluded volume between all

beads, using a Weeks-Chandler-Andersen (WCA) potential, and a generalized, attractive

potential between the large particles and the interactive ends of the chains (shown in

orange, referred to here as "interactive ends"); see Figure 3.1B. There is asymmetry in

the interaction potential, as the range of the attractive potential is half of the diameter

of the large particles. We chose to further simplify the system by representing the large

species as spheres without explicit functionalized chains. This choice is consistent with

colloidal systems that have previously shown sublattice melting, because these systems’

large particles were either spherical [100, 105] or densely enough grafted with polymer

chains [20] that a spherical potential is a reasonable approximation. However, the small

particles cannot be modeled as spheres due to their higher curvature and therefore lower

packing density of grafted chains. When chains are omitted and the interaction potential

between small and large particles is modelled with spherical potentials, mostly FCC crys-

tals are obtained [100, 105]. This may be because explicitly representing grafted chains on

the small particles also enables spatially anisotropic interactions between the small and

large particles. These can occur when chains bundle together in configurations analogous

to hybridization electron orbitals present in covalent bonding called skyrmions [111, 115].

The concept of skyrmions has proved useful in explaining the appearance of non-close

packed functionalized colloidal crystal structures.
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With this model, we find that both size and interaction range asymmetries are needed

for delocalization to occur. The passage from localized-to-delocalized small particles is

fully continuous, closely related to diffusion of the small particles, and enhanced by the

vibrational entropy of the large particle lattice. This continuous behavior arises from a

competition between enthalpic and entropic driving forces. Here enthalpic contributions

can be understood through analysis of the interaction energy landscape between the large

particles and interactive beads of the small particles. Entropic contributions arise from

the vibrations of the large particle lattice.

The rest of the paper is organized as follows. We begin by describing the MD simula-

tions, as well as a theoretical model used for the free energy analysis of these crystals. We

continue with a symmetry and energy analysis of relevant aspects of the BCC sublattice

and its energy landscape. We then describe an analysis of the temperature-dependent

thermodynamic and physical properties such as lattice parameter and specific heat per

particle. We conclude by analyzing the importance of lattice vibrations as the driving

force for both delocalization and lattice expansion for these crystals.

3.2. Methods

3.2.1. General description of the MD model

There are two types of pair interactions between the beads in the system. First, all beads

have excluded volume interactions with each other through the WCA potential. Second,

there is an attractive interaction between the interactive end of the chain and the large

particles. That interaction is in the form of a Gaussian potential and is shown graphically
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in Figure 3.1B and mathematically here:

Upair(r) =


UWCA(r) + UGaussian(r) r ≤ rcutoff

0 otherwise

(3.1)

where

UWCA(r) = 4

((σ
r

)12
−
(σ
r

)6)
− 4

(( σ

21/6σ

)12
−
( σ

21/6σ

)6)
for r ≤ 21/6σ(3.2)

UGauss(r) =− εe
− 1

2

(
r

σgauss

)2

for r ≤ rcutoff(3.3)

where r is the distance between the centers of the large particle and the interactive end

bead of the small particle chains; σ = σlarge + σint. bead, the sum of the radii of the large

particle and the interactive bead; ε is a (positive valued) parameter that determines

the strength of an individual large particle-interactive bead interaction; and σgauss is a

parameter that determines the range of UGauss(r). As usual, the WCA potential is cut off

at 21/6σ and shifted such that UWCA is zero at the cutoff, that is UWCA(r = 21/6σ) = 0.

The value for rcutoff was selected such that UGauss(r) has safely decayed to near zero by

r = rcutoff. We also used the HOOMD-blue xplor option which adds a subtle smoothing

near rcutoff such that the UGaussian decays smoothly to zero.1

These parameters can be adjusted such that the system resembles interactions between

two colloid species of choice. Additional parameters may vary are: particle size, number

of chains on each small particle, temperature, system composition (ratio of small:large

1See md.pair.pair documentation:
https://hoomd-blue.readthedocs.io/en/stable/module-md-pair.html
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(a)

Parameter Value

σlarge particle 10.5 nm

σsmall particle center 1.0 nm

σchain bead 1.0 nm

σinteractive chain end bead 0.5 nm

ε 70 kJ/mol

σgauss 4.8 nm

rcutoff 8.4 nm

# non-interactive beads/chain 3

(b)

Parameter Value

small:large particle ratio 6:1

temperature kBT = 0.8− 2 kJ/mol

# chains/small particle 4, 6, 8, 10

Table 3.1. Parameters used in the present study. (a) Fixed parameters
(σ is radius). With these, the system resembles a binary system of weakly
interacting chain-grafted colloids. (b) Variable parameters. Changing these
allows us to explore properties of the system.

colloids in the simulation box), and length and stiffness of the chains on the small particles.

The properties chosen for the study in this paper are listed in the next section.
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3.2.2. Parameters and simulation scheme

We chose parameters for the interaction of our particles to generalize the short ranged

attractive potential found in self-assembled DNA functionalized colloidal crystals[19, 116–

118]. DNA functionalized colloids interact by forming hydrogen bonds between the single

stranded DNA at the ends of the grafted chains. Using the parameters in Table 3.1A,

at T ∗ = 1, the potential well shown in Figure 3.1B has a depth of -4.1 kBT , which

is approximately the binding energy of hydrogen bonding in single-stranded DNA (3

- 6 kBT [117, 118]). However, given the general nature of our model, other forms of

interactions found in functionalized colloidal crystals, such as dispersion interactions, can

be represented with this model. Additionally, we fixed a particle size asymmetry that is in

the regime in which binary solids form interstitial solid solutions (ISSs), where the smaller

species occupies interstitial sites of the large species lattice. For example, in metallic

binary alloys, one of the Hume-Rothery rules[119] require atomic size asymmetries where

the smaller species size is ≤ 0.4 the size of the larger species in order to form ISSs. For

functionalized binary colloidal particles, it was experimentally demonstrated[20] that ISSs

were formed only for particle diameter ratios of 10 to 1.4 nm, while they were not formed

when the smaller particles where larger.

For this study, we ran simulations of colloidal systems at different temperatures and

number of grafted chains per small particle, as detailed in Table 3.1B. Varying both

temperature and number of chains allows us to explore a wide range of system states.

Changing the number of chains per small particle changes the total attraction strength

between small and large particles, as well as the symmetry of available chain configu-

rations. Additionally, because the attractive interaction is simple (Equation (3.3)), the
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system’s behavior is determined by the ratio ε/kBT . Therefore, by varying temperature,

we are also effectively examining the range of behavior that would appear if we instead

varied interaction strength.

All simulations were run using HOOMD-blue version 2.5.1[120, 121] in the NPT en-

semble with periodic boundary conditions at near-zero pressure (207 Pa, which is ∼ 2%

of atmospheric pressure). Using a pressure very close to zero enables us to attribute the

observed crystal assembly to the interactions between colloids, rather than an external

pressure [20]. Additionally, during the NPT portion of the run, the box was allowed to

fluctuate in size and shape, which enabled lattices that were initialized in one crystal

structure to relax into another if it was favorable to do so.

The full simulation scheme is as follows: we started the simulations in various initial

lattice configurations (BCC, SC, FCC, BCT) with 6x6x6 unit cells in the simulation

box. The simulations were then equilibrated, thermalized, and depressurized to their

final pressure. This initial sequence lasted 312 ns. Then, the simulations were run in the

NPT ensemble for an additional 8.44 µs. For analysis, the first 1.38 µs were considered

to be an equilibration period and not included in calculation of properties. Therefore,

analysis of the simulations was conducted on the last 7.37 µs.

System topology for the simulation was built using Hoobas, [122] analysis was done

in Python using MDAnalysis [123, 124] and R, visualization of the simulation was done

in VMD [125] with the GSD plugin2 using the internal Tachyon ray-tracing library [126]

(see Figure 3.1A), and scientific plotting and calculation of isosurfaces and 3-dimensional

densities (see Figures 3.3 and 3.6) was done in Mayavi [127].

2See HOOMD-blue GSD plugin for VMD at https://github.com/mphoward/gsd-vmd



80

3.2.3. Theoretical free energy of the exact soluble model

The theoretical model described in Section Vibrational entropy drives lattice expansion is

derived by calculating the energetic environment of one interactive bead in one unit cell

of a fixed BCC lattice of large particles. That is:

Z(a, T ) =

∫ ∫
e−Uend(r⃗,p⃗;a)/kBT dr⃗ dp⃗

Z(a, T ) = (2πmkBT )
3/2

∫
e−Upotential(r⃗;a)/kBT dr⃗(3.4)

where Uend(r⃗, p⃗; a) is the energy associated with the particles in one unit cell with lattice

parameter a and an interactive end with position r⃗ and momentum p⃗. The position of the

interactive bead r⃗ is integrated over one unit cell and its momentum dp⃗ is integrated over

all real numbers (this Gaussian integral is known from the ideal gas partition function).

The integral has been simplified using the definition of energy Uend as:

Uend(r⃗, p⃗; a) =
p⃗2

2m
+ Upotential(r⃗; a)

Upotential(r⃗; a) =
∑
n

Upair(|r⃗ − R⃗n|; a) +
∑
j<k

UWCA(|R⃗j − R⃗k|)

where Upair(r⃗; a) is the pair potential between a large particle and an interactive bead, as

defined in Equation 3.1, and the sum is taken over all large particles that could influence

the energy of an interactive bead at r⃗ (R⃗n indicates the position of the nth large particle).

In this case, we include 15 large particles: all 9 pictured in the BCC cell in Figure 3.2A,

plus the large particles in the center of all 6 non-diagonal adjacent unit cells. The range

over which Upair(r; a) is nonzero in this model is short enough such that this captures all
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interactions. UWCA(r) is the WCA potential between large particles; this term becomes

important when a approaches the diameter of the large particles.

We then numerically integrate Equation 3.4 to find the partition function, and we can

set up equations to calculate any statistical mechanical quantity that can be found with

that result. For example, to calculate the average interaction energy between small and

large particles, we numerically evaluate the following (assuming a is large enough that

UWCA(r) can be neglected):

⟨Upotential(a, T )⟩ =
1

Z(a, T )
(2πmkBT )

3/2

∫ (∑
n

Upair(|r⃗ − R⃗n|; a)

)
e−Upotential(r⃗;a)/kBT dr⃗

(3.5)

The partition function is also used to calculate free energy using:

F (a, T ) = −kBT ln (Z(a, T ))

This model enables us to understand how the BCC energy landscape impacts system

behavior, despite its simplicity. For example, it does not include lattice fluctuations.

However, the lack of lattice fluctuations impacts the variance but not the mean of predicted

energy values (we have seen this trend when comparing the mean and variance of the

interaction energy between the fixed and fluctuating lattice cases).

Additionally, this model does not include particles other than the lattice and a single

interactive bead. This is a sufficient approximation because the interaction between the

small and large particles is more significant than the interaction between small particles.

That is particularly true when small particles have fewer chains, because the small par-

ticles interact with 4 large particles when they sit at BCC tetrahedral sites. When there
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are 4-6 chains on each small particle, each chain is, on average, attracted to one of the 4

nearby but physically separated potential wells (see Figures 3.2B and 3.2C). Therefore,

their excluded volume interactions don’t substantially impact their average energy values,

and agreement between theory and simulation is stronger for systems with fewer chains

per small particle. However, as described later, the theory’s lack of bond constraints does

matter. In simulation, the bonds in small particle chains don’t allow interactive beads to

access the lowest-energy part of the unit cell’s potential wells. However, this appears to

simply scale the average energy of the interactive beads, especially, as noted, for systems

with fewer chains.

Lastly, note that the lattice parameter and temperature are both inputs to this par-

tition function. It is possible that this formulation could predict some lattice expansion

as a function of temperature. However, because of the differences in average location

of the interactive bead between theory and simulation (due to bond constraints), we do

not believe that this will be a quantitative prediction for properties of a fluctuating lat-

tice simulation. Despite this, this theory can provide a sense of how much the lattice

vibrations contribute to certain properties of a system where they are present.

3.3. Results and Discussion

3.3.1. 6:1 systems form BCC lattices with small particles localized at tetra-

hedral sites

For each value of chains per small particle, 6:1 systems form BCC lattices over a wide

temperature range. This is consistent with findings of Girdard, et al. [20] with respect to

their 6:1 systems. At temperatures below this range, we observe formation of other crystal
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lattice types, and at higher temperatures, we observe liquid or gas phases; see SI for more

information on determining BCC stability. At lower temperatures within the BCC range,

the large particles sit at BCC lattice points and the small particles localize at the BCC

tetrahedral sites, also known as 12d Wyckoff positions; these are shown in Figure 3.2A.

The location of the tetrahedral sites means that each small particle can interact with four

large particles simultaneously.

An analysis of the symmetry and energy associated with the tetrahedral sites reveals

why small particles localize there. The potential energy of interaction between large

particles and the interactive bead at the end of each chain can be seen in Figure 3.2B.

Dark red indicates negative interaction energy and defines the areas most favorable for the

interactive ends to occupy. Conversely, the lighter areas indicate an interaction energy of

approximately zero. There are four nearly zero energy sites per face, visible in the (001)

plane image in Figure 3.2B. These are the tetrahedral sites. This suggests that the small

particle centers localize at the tetrahedral sites because this enables the interactive ends

to access the most energetically favorable regions of the unit cell. Tetrahedral structures

have also been observed experimentally. The formation of distorted tetrahedral structures

between size asymmetric colloids has been reported within a specific size asymmetry range

(which does not include the dimensions of our system)[128]. The experimental tetrahedral

clusters, mediated by short ranged but strong potentials (both electrostatic and DNA

hybridization), were explained using entropic principles. Here, enthalpy seems to be the

predominant driving force for the formation of these BCC crystals.

The energy landscape show in Figure 3.2B is a good predictor of the locations of

particles in simulation. Figure 3.3A shows the probability density of the small particle
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centers in a single BCC unit cell at low temperature. The small particles are clearly

localized at the tetrahedral sites. Additionally, Figure 3.2C shows the probability density

of the interactive ends in a low temperature simulation. The location of the highest density

regions aligns well with the lowest energy positions in Figure 3.2B. A notable exception

is that the limited reach of the chains in simulation does not allow the interactive beads

to reach the bottom of each potential well.

Lastly, the 6:1 number ratio between small and large particles allows the tetrahedral

sites to be exactly filled. This is because there are 2 lattice points (large particles) and

12 tetrahedral sites (small particles) per BCC unit cell. A lower ratio would produce

vacancies in tetrahedral sites; in those cases, we observe hopping of small particles between

sites. A larger ratio results in more small particles than available tetrahedral sites; in those

cases, interstitial defects are prominent and full localization is not possible. Studying the

6:1 system allows us to focus on the properties of the localized-to-delocalized transition

by avoid confounding factors introduced by vacancy hopping or symmetry change.

3.3.2. The localized-to-delocalized transition is smooth and its onset depends

on interaction strength

Figure 3.3 shows the average visitation frequency of the small particle centers in one BCC

unit cell, when localized and when delocalized. Though the system pictured has 6 chains

per small particle, we see similar behavior for all values of chains per small particle: when

localized, small particles occupy the tetrahedral sites, and when delocalized, they occupy

a much larger volume. Even when delocalized, the small particles concentrate around the

tetrahedral sites and form a pattern in which the additional volume occupied by the small
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Figure 3.2. (A) BCC lattice sites (turquoise) and tetrahedral intersti-
tial sites (purple) of an ideal BCC lattice. Connections between nearest-
neighbor tetrahedral sites are shown as visual guides. (B) The potential
energy landscape in different planes of one interactive end, based on its
interaction potential with the large particles, in one BCC unit cell. Deeper
red indicates negative values (more favorable energetic interaction), yellow
indicates values around zero, and dark blue indicates positive values (unfa-
vorable interactions; the location of large particles is shown in black). (C)
The probability distribution of the interactive beads on different planes for
the case of 6 chains at T ∗ = 0.9. Comparing this to (B), interactive bead
probability is highest in areas with the most favorable energetic interac-
tions.
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Figure 3.3. Visitation frequency of (centers of) small particles in one unit
cell of localized and delocalized systems. Small particles have 6 chains, and
the maximum of the visitation frequency is 0.0115. (A) T ∗ = 0.9. Small
particles are localized on the tetrahedral sites of the BCC lattice. (B)
T ∗ = 1.6. Small particles are delocalized. They favor the tetrahedral sites
of the BCC lattice but also roam around the crystal.

particles is roughly along the edges of the BCC’s Wigner-Seitz cell. This permits the small

particles to move between nearest tetrahedral sites along an energetically-favorable path,

equidistant to multiple neighboring lattice points.

We observe a smooth change from localized-to-delocalized behavior in all cases. Both

the onset of delocalization Tdeloc and the overall melting temperature of the lattice Tmelt

are higher with more grafted chains per small particle; see Table S1. In these systems,
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Figure 3.4. Lattice properties as a function of temperature, for all systems
studied. Fits are included as visual guides. Black arrows indicate Tdeloc, the
onset of delocalization for each system; see SI for how these are identified.
Note that all properties change linearly with temperature below and expo-
nentially above Tdeloc, with the exception of Uint. (A) Approximate volume
fraction occupied by 70% of the small particles’ probability ϕoccupied. This
is a qualitative measure of delocalization. (B) Diffusion constant D of the
small particles. (C) Average interaction energy between small and large
particles Uint, per small particle. (D) Specific heat at constant pressure
cp = Cp/N (N is the total number of particles) of the system. These curves
were calculated by fitting spline curves to mean values of enthalpy and
differentiating those curves with temperature. (E) Average BCC lattice
parameter a. (F) Lattice fluctuations, measured by the median displace-
ment of large particles from their average positions. Uncertainty bars here
indicate first and third quartiles, rather than standard deviation, due to the
skewed nature of the underlying distribution.
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the total strength of interaction between the small and large particles scales with the

number of grafted chains. Therefore, we use the number of grafted chains per small

particle and interaction strength interchangeably throughout this paper. Additionally,

Tdeloc approaches Tmelt with increasing interaction strength, which means that we observe

a range of behavior. In systems with 4 chains per small particle, Tdeloc is very low, and

the sublattice is delocalized at almost every reported temperature. For 6 and 8 chains

per small particle, Tdeloc is higher and the system is localized at low temperatures and

delocalized at high temperatures. For 10 chains per small particle, Tdeloc is almost equal to

Tmelt, and the small particles exhibit almost no sublattice delocalization until just before

crystal melting.

In Figure 3.4, we plot structural and thermodynamic properties of the crystals to

characterize their transition. These properties and their importance are listed below.

• Occupied volume fraction of the small particles, ϕoccupied (Figure 3.4A), is a quali-

tative metric that directly measures delocalization. It represents the approximate

volume occupied by 70% of the small particles’ probability, as a fraction of the

total available volume (see Supplementary Information for more information). In

a previous study [20], delocalization was quantified using metallicity, a parameter

associated to the Shannon entropy of the sublattice. Here we use a more direct

parameter to measure the filling of space by small particles in the sublattice.

• Diffusion coefficient of the small particles, D (Figure 3.4B), has been used to

categorize the order of superionic transitions [102]. We have observed that

the localized-to-delocalized change is associated with both static properties like

ϕoccupied and dynamic properties like D.
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• Average interaction energy of a small particle, Uint (Figure 3.4C), is capable of

reflecting structural changes.

• Specific heat capacity, cp (Figure 3.4D), provides insight into the order of phase

transitions.

• Lattice parameter, a (Figure 3.4E), had been shown to reflect a first order phase

transition in previous work in charged colloidal systems [105].

• Median lattice fluctuations (Figure 3.4F) are essential for quantifying melting

through the Lindemann criterion.

All properties are plotted as a function of reduced temperature T ∗, which is the value of

kBT in energy units. In each panel in Figure 3.4, a black arrow indicates the approximate

Tdeloc for each system. This temperature is estimated from the diffusion properties of the

sublattice; see SI for more information about how this was calculated.

Many of the properties in Figure 3.4 exhibit two trends, one during and another before

delocalization. The occupied volume fraction ϕoccupied, diffusion coefficient of the small

particles D, the lattice parameter a, and the lattice fluctuations (Figures 3.4A, 3.4B, 3.4E,

and 3.4F) all increase linearly below Tdeloc and exponentially above, until the lattice melts.

These phenomena appear correlated; particles begin to both diffuse and occupy a larger

volume at the same temperatures, which is also the point at which lattice expansion and

lattice fluctuations begin to increase dramatically. These ties will be explored in later

sections.

The smooth increase in ϕoccupied, a, and other properties suggests that the change from

localized-to-delocalized small particles is not a phase transition. This is corroborated by

the behavior of the specific heat of the system, cp, shown in Figure 3.4D. We observe that cp
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of all systems is continuous and convex, indicating that no phase transition occurs during

the process of delocalization. This is expected because the change from localization-

to-delocalization does not reflect a change in the BCC symmetry imposed by the large

particles and so the small particles’ energy landscape is not qualitatively impacted.

Even though the cp curves do not exhibit evidence of a phase transition, they provide

information about the underlying energy landscape of the system. We explain the convex-

ity of the cp curves with the deactivation and activation of degrees of freedom into which

energy can be distributed. The low temperature negative slope of these curves relates to

the flattening of the local minima of the energy landscape. This flattening decreases the

interactive ends’ available configurational phase space, decreasing cp. This is also why the

slope is more negative for systems with higher interaction strength. At higher tempera-

tures, new energy modes are enabled in the form of diffusion of the small particles and

lattice vibrations. This eventually leads to delocalization, and cp continues to increase

until the lattice fully melts.

Notably, while the ϕoccupied and a change rapidly above Tdeloc, the interaction energy

does not. Figure 3.4C shows the average "binding energy" (the energy of interaction

between the large particles and interactive ends, relative to when they are infinitely far

apart) per small particle in the system as a function of temperature. That this quantity

increases only linearly even above Tdeloc indicates that entropy plays an important role

in delocalization. This will be discussed in Section Vibrational entropy drives lattice

expansion.
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3.3.3. Lattice fluctuations are essential for delocalization

To determine the importance of lattice fluctuations to delocalization, we ran additional

simulations in which the large particles were fixed on their lattice points and not allowed

to vibrate. The lattice parameter used for a given "fixed lattice" run was the mean value

calculated from the unconstrained simulation with the same temperature and number of

chains per small particle (Figure 3.4E). We found that without lattice vibrations, the

small particles are not able to fully delocalize. This can be seen in the average visitation

frequency plots in Figure 3.6. This is quantified by a large reduction in occupied volume

fraction and a slight decrease of the diffusion coefficients relative to the unconstrained

cases. This is similar to the finding by Schommers [103], who saw diffusion in molecular

dynamics models of superionic α-AgI only when the iodine ion lattice was allowed to

vibrate.

Based on these results, delocalization is driven by both lattice vibrations and diffusion.

We posit that vibration-driven delocalization occurs when lattice deformation either shifts

the energy landscape sufficiently such that small particles can more easily diffuse, or that

large particles pull small particles between tetrahedral sites while vibrating. Vibration-

driven delocalization is fully suppressed in the fixed lattice simulations; this can be seen in

Figure 3.5A. However, some delocalization remains due to small particle diffusion. As can

be seen in Figure 3.5B, diffusion is still present in the fixed lattice simulations and appears

to primarily depend on temperature and the lattice parameter, because they determine

the flatness of the energy landscape.

Analysis of the fixed lattice simulations demonstrates that delocalization is fully

achieved only when both lattice vibrations and diffusion are present. The similarity
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between cp curves for the fixed and fluctuating lattice runs, shown in Figure 3.5D for

the 4 chain system, underscores the importance of diffusion. With or without lattice

vibrations, cp is continuous. Both cp curves exhibit an initial decrease characteristic of

the flattening of the energy landscape but differ at higher temperatures. This is due to

the lack of lattice vibrations in the fixed lattice simulations. As stated in the previous

section, energy modes associated to the lattice vibrations are what drive the increase of cp

after the flattening of the energy landscape. Therefore, cp for the fixed lattice simulations

continues to decrease, whereas, the unconstrained simulations’ cp increases.

3.3.4. Vibrational entropy drives lattice expansion

Having established that lattice vibrations are crucial for delocalization, we turn to address

the exponential expansion shown in Figure 3.4E. The exponential lattice expansion ap-

pears to be highly correlated with delocalization, but the reason that it occurs is unclear.

To gain a better understanding, we performed a free energy analysis of our system using

the same simplified theoretical model that predicted the energy landscape of a BCC unit

cell in Figure 3.2B, and which is described in Section Methods. This theoretical model

describes one interactive end in a fixed (non-fluctuating) BCC unit cell of large parti-

cles. The energy of one lattice configuration based on the temperature, lattice parameter,

and position of the interactive end Uend(r⃗, p⃗; a) is found in Equation 3.5, and is based

on Equation 3.1 and Figure 3.1A. Using these definitions and a and T from simulation,

we calculated the partition function Z(a, T ) =
∫
e−Uend(r⃗,p⃗;a)/kBT dr⃗ dp⃗ by numerically

integrating over a unit cell. From this, we could calculate all relevant thermodynamic

properties. See Section Methods for more information.
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Figure 3.5. Lattice properties as a function of temperature, for fixed lattice
runs (compared to unconstrained runs). Data from the main runs (also in
Figure 3.4) is shown in grey circles, and data from the fixed lattice runs
is shown in blue triangles. Removing lattice fluctuations substantially sup-
presses delocalization and minorly suppresses diffusion. (A) Approximate
occupied volume fraction ϕoccupied. Arrows connect fixed and fluctuating
lattice simulations with the same number of chains per small particle as
a visual guide. (B) Diffusion constant D of small particles. (C) Aver-
age interaction energy Uint of small particles with large particles. Because
corresponding fixed and fluctuating lattice runs have the same average lat-
tice constant, the average interaction energy of the small particles does not
change, though the fluctuations of Uint do. (D) The specific heat at con-
stant pressure cp of the system with 4 chains per small particle.

We employed this model to explain why the lattice expands so rapidly at the onset of

delocalization. To do this, we compared two cases: (i) exponential expansion, which is the

observed behavior of the lattice, and (ii) linear expansion, in which the lattice expands

only linearly over the entire temperature range. We ran fixed lattice simulations of both

cases and compared those to theory.
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Figure 3.6. The average visitation frequency of the small particle centers
in a fixed lattice system with 6 chains per small particle. The maximum of
the visitation frequency is 0.0250. Without lattice fluctuations, the small
particles in the delocalized case occupy less volume than when lattice fluc-
tuations are present. Note that the unit cells of these lattices are actually
different sizes, but the images have been scaled such that the two are com-
parable. (A) T ∗ = 0.9. Small particles are localized on the tetrahedral sites
of the BCC lattice. This is similar to the unconstrained lattice case. (B)
T ∗ = 1.6. Small particles are delocalized. Again, they favor tetrahedral
sites but also diffuse between sites.

Figure 3.7A shows the average interaction energy per small particle in the exponen-

tially and linearly expanding cases, for simulation (points) and theory (solid line). We
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Figure 3.7. Comparison between theory and simulation (6 chain system).
(A) Interaction energy between small and large particles. Line represents
scaled theory results; points represent simulation results. (B) Theoretical
prediction of the free energy of the systems with exponentially expanding
lattice (main cases) and linearly expanding lattice. The free energy of the
linear case is lower, indicating that something outside the theory must ex-
plain why the lattice expands exponentially.

find that the theoretical model accurately predicts the energy in both cases up to a multi-

plicative factor. In the theoretical model, the interactive energy of a single interactive end

is ⟨Upotential⟩ = 1
Z(a,T )

∫
Upotential(r⃗; a) e

−Uend(r⃗,p⃗;a)/kBT dr⃗dp⃗ (a summary of Equation 3.5).

Because the result of this integral is the potential energy of one interactive end, we mul-

tiply ⟨Upotential⟩ by the number of chains per small particle to estimate the total energy of

a small particle. For example, Figure 3.7 shows simulation results for runs with 6 chains

per small particle. If the theoretical model were exact, we would multiply ⟨Upotential⟩ by
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6. However, the theoretical model overestimates the average energy per small particle

relative to simulation. This is due to the fact that, in simulation, the limited reach of

the chains does not allow the interactive end to fully explore the lowest energy portions

of the cell’s potential wells (this can be seen in the comparison between Figures 3.2B

and 3.2C). The result is that the interactive end’s energy is about 20% lower in simula-

tion than in theory. Therefore, the theoretical results shown in Figure 3.7A are scaled

by a factor of 0.82 (this factor differs by a few percent for the case of 4 chains per small

particle). Additionally, excluded volume interactions of more densely grafted chains can

impact the possible configurations of the interactive ends. This effect is not observed for

small particles with 4 and 6 chains, because the average energy per chain is independent

of the number of chains. Meanwhile, excluded volume interactions affect particle energy

to a minor extent in systems with 8 and 10 chains per small particle.

The close correspondence between small particle potential energy in simulation and

that predicted by theory indicates that the theoretical model can predict differences in

properties between the exponentially and linearly expanding cases. Therefore, we used this

model to compare the free energies of the two cases, to understand why one is favorable.

Using the partition function, we calculated the Helmholtz free energy, F = −kBT lnZ,

which is plotted in Figure 3.7B. According to the theoretical model, the free energy of

the linearly expanding lattice should be lower than the free energy of the exponentially

expanding lattice, so exponential expansion should be not favorable. We conclude, there-

fore, that at least one of the few interactions missing from the theoretical model must be

what drives the observed exponential expansion. There are three pieces missing from the
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theoretical model: (i) excluded volume interactions due to the presence of the other par-

ticle types, (ii) bond constraints, and (iii) lattice vibrations. We have already established

that excluded volume interactions do not greatly impact the average energy of the small

particles. Therefore, excluded volume should not contribute to the difference between

the exponentially and linearly expanding cases, especially with 4 and 6 chains per small

particle. We also can account for the bond constraints by scaling the potential energy

by about 0.8, as mentioned above. Additionally, bond constraints limit the reach of the

interactive ends and therefore are likely to make rapid lattice expansion less energetically

favorable. Therefore, it must be vibrational entropy that drives the exponential lattice

expansion. Additionally, large lattice fluctuations have already been seen to stabilize BCC

crystals around their melting temperatures [129], which is possible due to BCC crystals’

non-close packed structure and low coordination number. Vibrational entropy becomes

dominant only above a certain temperature that depends on the number of chains per

small particle. This is why we see exponential expansion and delocalization at differ-

ent temperatures depending on the interaction strength. Based on this analysis, we can

see that lattice vibrations determine both the degree of delocalization and the thermal

expansion of the lattice.

3.4. Conclusion

In summary, we have seen that the localized-to-delocalized transition in 6:1 (BCC)

binary colloidal systems is continuous, dominated by lattice vibrations, and tunable by

number of chains per small particle. Our results suggest that the delocalization of the

sublattice in this system is not a phase transition. This is supported by the fact that
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the symmetry of neither particle type changes during the transition; at all temperatures,

the large particles form a BCC lattice and the small particles favor the BCC tetrahedral

sites, even when delocalized. The lack of a phase transition is also evidenced by the fact

that cp is continuous for all systems. Moreover, delocalization is highly tied to vibrational

entropy. Using simulations in which lattice vibrations were prohibited, as well as a free

energy analysis with a simplified theoretical model, we conclude that most delocalization

is driven by lattice vibrations, and that vibrational entropy is what causes the lattice to

expand so rapidly above Tdeloc. We can also see that the temperature range associated

with the localized-to-delocalized transition is dependent on the number of chains per small

particle, a proxy for interaction strength. The nature of the transition does not change as

the number of chains per small particle does, but the presence of many chains suppresses

delocalization almost entirely. Additionally, the validation between the theoretical model

and simulation results reveals that the potential energy landscape of a single interactive

end within a BCC unit cell is a faithful representation of the simulated system, even

though we have not included other particles within the theoretical model. This is accurate

because of the asymmetry of range of interactions imposed by the size asymmetry of the

particles.

Based on our analysis, we can identify additional conditions that appear to be favor-

able for sublattice delocalization. Our findings show that delocalization tends to occur at

temperatures such that the small-large particle binding energy per chain is ∼ 3− 5 kBT .

Per Figure 3.4C, delocalization occurs when the total interaction energy is around 22

kBT/particle, distributed between all chains. This can be tuned by the number of chains
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grafted to the small particles. Additionally, we posit that, for the possibility of delocal-

ization, the small particle size must be comparable to the fluctuations of the lattice and

an asymmetry of interaction ranges must exist. The attraction range between small and

large particles must be greater than the repulsion range between small particles because

small particles must sit at and travel between interstitial sites that are closer together

than lattice points. This asymmetry is present in our model, and it can also be achieved

with charged colloids given a disparity in charge magnitudes between the small and large

particles [105, 130]. Note that increasing the range of repulsion between small particles

may change the nature of the transition by adding correlations between small particles;

however, we have not tested that here.

Under those conditions, similar analysis and conclusions may be generalized to other

colloidal systems, with or without chains, but with certain caveats. For example, a more

complex energy landscape with local energy minima at different interstitial symmetry

points could change the nature of the transition. This could enable the small particles

to transition through different symmetry points at different temperatures [113], which

would be reflected in the order of the transition. This may be why previous work on

charged colloidal systems [105] found a discontinuity in certain physical parameters like

the lattice constant. Additionally, other compositions produce different crystal types, and

a phase transition between two crystal lattices can occur as a function of temperature.

This can also impact the order of the localized-to-delocalized transition. Finally, the

scaling of interaction strength with number of chains per small particle may not hold

at system compositions that form non-BCC crystals, because the symmetry of collective
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chain configurations (impacted by the number of chains present) can affect the favorability

of different interstitial points and crystal structures.

Concerning the comparison between superionics and delocalized colloidal crystals, a

continuous transition has also been reported between ionic and superionic states for some

superionic crystals [131]. Therefore, drawing on the superionics literature can help us

understand colloidal crystal delocalization and vice versa. For example, soft vibrational

modes, which are high amplitude vibrations, are reported to be important for the presence

of superionic conduction, most commonly a mobile cationic interstitial within an anionic

lattice. Soft vibrational modes are stabilized by non-close packed crystals already seen

in superionics [113, 114] as well as in these BCC colloidal crystals. The mechanism of

this phenomenon is still not fully understood in superionic materials. However, it may be

possible to use results reported here by drawing an analogy between the electron density’s

role in the stability of the crystal and that of the potential energy landscape of our system.

The two may be compared by assuming polar covalent bonding between the static and

mobile species. If true, then our findings using these colloidal systems would translate to

superionic materials which are relevant to applications for the improved design of solid-

state batteries for energy storage [132–134].

3.5. Supporting Information

Supporting information contains: the pair distribution functions over the studied tem-

perature range; details of the determination of Tdeloc; the calculation method for occupied

volume and the heat capacity; and an analysis of nearest neighbor interactions (PDF).



101

Videos of rotating unit cells of a localized and delocalized sublattice for both unconstrained

and fixed lattice simulations are also available (.mp4 videos).
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CHAPTER 4

Insulator-to-metal transitions in colloidal crystals

This work was a collaboration between Ali Ehlen and I. We both performed and

analyzed simulations and wrote the paper. This paper is continues ideas presented in

[20, 135], however we explore other number ratios not previously studied in [135]. This is

with the objective of gaining a broader understanding of particle delocalization in different

crystal lattices. It is in this paper that we find how delocalization sometimes drives crystal

lattice transitions. We can control particle delocalization by tuning the temperature of

the system or its attractive strength.

The following was originally published in Physical Review Materials in 2021. It is

reproduced here with permission of INTRO, and PUBLISHER.

Supplementary material associated with this chapter can be found in Appendix B.
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ABSTRACT: Colloidal crystals formed by size-asymmetric binary particles co-assemble

into a wide variety of colloidal compounds with lattices akin to ionic crystals. Recently,

a transition from a compound phase with a sublattice of small particles to a metal-like

phase in which the small particles are delocalized has been predicted computationally

and observed experimentally. In this colloidal metallic phase, the small particles roam

the crystal maintaining the integrity of the lattice of large particles, as electrons do in

metals. A similar transition also occurs in superionic crystals, termed sublattice melting.

Here, we use energetic principles and a generalized molecular dynamics (MD) model of a

binary system of functionalized nanoparticles (NPs) to analyze the transition to sublattice

delocalization in different co-assembled crystal phases as a function of temperature (T ),

number of grafted chains on the small particles, and number ratio between the small and

large particles ns:nl. We find that ns:nl is the primary determinant of crystal type due to

energetic interactions and interstitial site filling, while the number of grafted chains per

small particle determines the stability of these crystals. We observe first-order sublattice

delocalization transitions as T increases, in which the host lattice transforms from low-

https://journals.aps.org/prmaterials/abstract/10.1103/PhysRevMaterials.5.115601
https://journals.aps.org/prmaterials/abstract/10.1103/PhysRevMaterials.5.115601
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to high-symmetry crystal structures, including A20 → BCT → BCC, Ad → BCT →

BCC, and BCC → BCC/FCC → FCC transitions and lattices. Analogous sublattice

transitions driven primarily by lattice vibrations have been seen in some atomic materials

exhibiting an insulator-metal transition also referred to as metallization. We also find

minima in the lattice vibrations and diffusion coefficient of small particles as a function

of ns:nl, indicating enhanced stability of certain crystal structures for ns:nl values that

form compounds.

4.1. Introduction

Binary colloids of size-asymmetric particles have been shown to co-assemble into a

diverse set of binary crystals [10, 14, 97, 136–140]. These crystals are compounds akin

to atomic ionic crystals because the smaller particles occupy interstitial sites of a lattice

formed by the large particles. Recently the exploration of binary colloidal crystals with

highly size-asymmetric functionalized NPs has yielded the observation of crystal assem-

blies where the small NPs delocalize, rather than remaining fixed at interstitial sublattice

sites [20, 135, 141]. This phenomenon was also observed in simulations of colloidal crystals

of oppositely charged, highly size-asymmetric, and highly charge-asymmetric nanoparti-

cles with screened Coulomb interactions [105, 142]. In all these systems, the delocalized

and diffusive small particles keep the large particles in fixed lattice positions, as electrons

do in crystalline metals. The result is a metal-like colloidal crystal.

The degree of sublattice delocalization was quantified using a normalized Shannon

entropy, termed metallicity, by Girard and Olvera de la Cruz [20, 143]. They used simu-

lations of co-assembled DNA-functionalized NPs that were highly asymmetric in size and
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grafting density of complementary linkers. These showed that sublattice delocalization,

and consequently metallicity, increased with T , changing the crystal from ionic to metal-

lic. Furthermore, Girard and Olvera de la Cruz discovered a minimum in metallicity as a

function of the ratio of the number of small NPs (ns) to the number of large NPs (nl) in the

crystal. They used simple band structure construction concepts from solid state physics

to explain the observed minimum in metallicity and equated metallicity to conductivity

in metals [143]. In this analogy, the value ns/nl is the “valency," and the metallicity,

akin to conductivity, decreases with increasing ns/nl as interstitial sites are filled until

it reaches a minimum at the compound values of the lattice, when the interstitial sites

are saturated (i.e., ns/nl = 6 for a body-centered cubic (BCC) crystal). Upon further

increase of ns/nl, the metallicity increases as the conductivity does in atomic systems

with increasing number of electrons in the conduction band. They also highlighted that

the minimum in metallicity becomes sharper with an increase in the interaction energy

between the small and large NPs, achieved by increasing the number of linkers on the

small NPs. They also suggested that the localization-delocalization transition in colloidal

crystals can be described as a classical analog to a Mott-like insulator-metal transition

(IMT) in atomic systems.

Interestingly, sublattice delocalization is also observed in non-metallic atomic systems,

specifically superionic materials [102], and the transition to superionic sublattice delocal-

ization is often termed “sublattice melting." A canonical superionic material is AgI, in

which the larger atomic species I forms a BCC host lattice through which Ag ions dif-

fuse. The Ag ions have been identified as diffusing between neighboring BCC tetrahedral
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sites [103, 144], and diffusion has been seen to be strongly coupled to the dynamics of the

host lattice [131, 145].

Recently, we have observed similar behavior in colloidal systems by using a generalized

MD model of a binary, size-asymmetric system of functionalized NPs with ns:nl = 6:1.

We reported the formation of stable colloidal BCC crystals with a diffusive sublattice of

small particles translating between neighboring tetrahedral sites [135]. Similar to AgI,

we observed a strong correlation between diffusion and lattice vibrations as a function

of T , but we noted that the transition to sublattice delocalization is described by a

smooth change, rather than a true phase transition. This suggests that phonons play an

important role in the delocalization transition, and that an atomic analog to this classical

localization-delocalization transition should include the effect of the interactions of the

phonons with metallic electrons as in the Peierls IMT.

Here, we study the transition to sublattice delocalization at different values of the

number ratio ns:nl, as a function of T and the number of grafted chains per small particle,

and we examine the origin of the delocalization transition. We highlight the similarities

with the IMT and with superionic sublattice melting and analyze the effect of the phonons

in the localization-delocalization transition. We use the MD model established in [135] in

the NPT ensemble at near zero pressure to ensure that the resulting assemblies are due to

interactions between small and large particles alone. The model, consisting of mutually

attractive and size-asymmetric NPs, is visually depicted in Fig. 4.1. The turquoise sphere

is a coarse-grained representation of a large particle with either densely grafted chains or

a functionalized surface. The small particle is represented by a central sphere (purple)

and explicitly modeled grafted chains (white), each of which has an interactive terminus
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Figure 4.1. Graphical representation of the MD model. All beads have
excluded volume interactions with each other, and there is an attractive in-
teraction between the large particles (turquoise) and the interactive end of
each chain (orange), as described in [135]. Note that there is no attractive
interaction between large particles. Therefore, assemblies of these particles
are held together exclusively by the attraction between the small particles’
interactive beads and the large particles. Because the large particles repre-
sent densely grafted large particles, some overlap is permitted.

(orange) that is radially attractive only to large particles. The generality of the model

implies that we can represent a variety of experimental systems [137, 138, 146–149], and

the tunability of NPs enables us to find a rich variety of lattices and multiple types of

delocalization transitions.

Using this model, we find that the crystal structure is determined by ns:nl and the

lattice stability is determined by the number of grafted chains per small particle. We

observe a variety of crystals, including A20 and body-centered tetragonal (BCT) lattices,

and we confirm that the low T (localized sublattice) positions of the small particles can

be understood by analyzing their potential energy landscape. Almost all studied sys-

tems undergo a transition to sublattice delocalization with increasing T , and the type
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of transition is also determined by ns:nl based on energetic interactions and interstitial

site filling. For some ns:nl ratios, the sublattice smoothly delocalizes without undergoing

a phase transition. This occurs for cubic lattices with nearly or completely full sublat-

tice sites, near 6:1 and 10:1. For other number ratios, we observe a first-order sublattice

delocalization transition accompanied by a first-order host lattice transition to a crystal

of higher symmetry with inherent sublattice vacancies. This is seen in transitions from

A20 to BCT, BCT to BCC, and BCC to face-centered cubic (FCC), which all occur upon

increasing T . We present evidence that these transitions are entropic and driven by lattice

vibrations, similar to the metallization of atomic materials driven by phonons, as in the

Peierls IMT [150]. Finally, we identify minima in the lattice vibrations and diffusion coef-

ficient of the small particles as a function of ns:nl. Crystals at the minima are those whose

interstitial sites are saturated with small particles, except the high-ns:nl FCC crystals.

This article is organized as follows. In the next section, we will describe the range of

crystal lattices observed in our parameter space of 4, 6, 8, and 10 grafted chains per small

particle and number ratios ns:nl between 3:1 and 10:1, over a wide range of temperatures.

We will then further detail the three delocalization behaviors we observe and discuss the

implications of the diffusion coefficient minima.

4.2. Results

4.2.1. Determining crystal structure by number ratio ns:nl

At low temperatures, the large particles form a variety of lattices with the small particles

localized at interstitial sites. These sites are always Wyckoff positions, which have a

unique set of symmetry operators associated with the host lattice. The location of the
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Figure 4.2. Phase diagrams of different ns:nl values, as a function of re-
duced temperature T (see 4.4) and number of chains per small particle.
“Coex." stands for “coexistence" and 129a is an unknown crystal type in
space group 129 defined in the Supplemental Material, Section B.2.1. The
crystal structures observed only once are not analyzed in detail here. For
the higher ratios where no data is shown for 4 or 6 chains, it is because
no stable lattices were found. All data plotted in this paper is taken from
simulations represented in these phase diagrams.

small particles at these interstitial sites is dependent only on crystal type. We find that

the symmetry of the resulting lattices depends on ns:nl, and the stability of the lattice

depends on the number of chains per small particle.

Table 4.1 shows the most common crystals observed in our systems and the number

ratios ns:nl that produce them, and Figure 4.2 shows a phase diagram of all simulations

studied in this work. The phase diagrams demonstrate visually that ns:nl determines

crystal structure, and the crystal properties in Table 4.1 help explain trends present in
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Lattice type, space group # lattice
pts/unit
cell

Wyckoff position
(# NNs/site)

ns:nl ratios
that result in
this lattice

A20
63 Cmcm

(3:1)

(4:1)

4 16h, 4c (3:1
systems) or
16h, 8g (×2)
(4:1 systems)
(all 5 NNs)

3:1 and 4:1,
resulting in
different
parameter
ratios

Ad

129
P4/nmm

4 2c (×2), 4f, 8j
(4-5 NNs)

4:1

BCT
139
I4/mmm

2 4d (4 NNs)
4e (5 NNs)

4:1 (with
c/a = 2, as
shown here)

BCC
229 Im3m

2 12d* (4 NNs) 5:1, 6:1

FCC
225 Fm3m

4 32f (3 NNs),
8c* (3 NNs)

9:1, 10:1

Table 4.1. Observed lattices, defined by large particles at lattice points and
small particles at interstitial sites, and arranged by the ns:nl at which they
are observed with a localized sublattice. Lower symmetry lattices appear
in lower ns:nl systems, and the ns:nl ratio at which we observe a crystal
type corresponds to: #Wyckoff positions/#lattice points, on a per-unit
cell basis (for example: 12/2 = 6 for a BCC). In lower-symmetry lattices,
small particles sit at Wyckoff positions with more nearest large particle
neighbors (NNs) than those in higher-symmetry lattices. *12d positions in
BCC crystals and 8c positions in FCC crystals are tetrahedral sites.
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the phase diagrams. For example, the value of ns:nl at which a crystal structure is observed

is consistent with the ratio of the number of lattice points (large particles) to the number

of interstitial points associated with Wyckoff positions (small particles) of the unit cell.

Explicitly, column 4 = column 3 divided by column 2 (5:1 and 9:1 cases both contain

interstitial vacancies). Note that some Wyckoff positions in A20 lattices are degenerate

based on the observed lattice parameter ratios, so the A20 16h Wyckoff positions map

onto 8 unique points instead of 16 and one 8g set maps onto 4 points. Table 4.1 also

demonstrates that the number of large particle nearest neighbors (NNs) interacting with

each small particle decreases with increasing lattice symmetry and ns:nl ratio. This is

also an important approximation to the average potential energy interactions Uint. between

the two species. In summary, the findings demonstrated in Table 4.1 and Fig. 4.2 show

that decreasing ns:nl results in lower-symmetry lattices with small particles sitting at

lower-energy interstitial points.

The most common lattices are A20, Ad, high symmetry BCTs, BCC, and FCC, though

simple hexagonal (SH) and simple cubic (SC) are also observed. The non-cubic nature

of BCT, Ad, and A20 requires a larger set of defining lattice parameters than the cubic

crystals, and we observe multiple parameter ratios for each structure. For example, most

BCT lattices with ns:nl = 4:1 shown in Fig. 4.2 have the lattice parameter ratio c/a = 2.

This is the configuration shown in Table 4.1, and it creates favorable conditions for 8 small

particles in the unit cell, each of which interacts with 4 or 5 large particles depending on

the site. However, some 3:1 and 4:1 BCT crystals in which the small particles have only

4 chains have c/a =
√

2
3

(not shown in Table 4.1 for simplicity). We hypothesize that

the interstitial sites in the more elongated BCT structure that allow for interactions with
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5 large particle nearest neighbors require the small particles to have at least 5 chains.

Therefore, small particles with only 4 grafted chains cannot stabilize those elongated

structures. This is supported by a Fig. B.3 in the Supplemental Material, which shows

that small particles with 4 chains rarely interact with 5 large particles at once. Generally,

BCT crystals only take discrete c/a ratios corresponding to lattices of higher symmetry.

For more details, see the Supplemental Materials, Section B.2.1 and Section B.2.2.

Ad lattices are also tetragonal and can be visually compared to BCT lattices in which

an additional symmetry is broken because the conventional unit cell’s central particle is

not body-centered. The Ad unit cell is defined by parameters a and c (similar to BCT)

and z, which determines the offset of the central particles. When z = 0.5, BCT symmetry

is recovered. For all observed Ad crystals c/a = 2. However, there is a continuous increase

of the z parameter with T , from z ∼ 0.4 at low T to z = 0.5 at the transition to BCT

lattice with c/a = 2. These local spatial changes as a function of temperature indicate

the capacity for these colloidal crystals to be used as reconfigurable materials.

A20 crystals are orthorhombic and yet lower symmetry and more complex than the

BCT or Ad crystals. Their unit cells are defined by the ratios between a, b, and c, as well

as a parameter y that determines the lattice point placement within the unit cell. We

observe two A20 crystal types with different lattice parameter ratios as a function of ns:nl.

All 3:1 A20s have a consistent set of parameters c/a, c/b, and y, while the 4:1 A20 have

another. Each parameter set results in different numbers of interstitial sites for the small

particles. Additionally, due to the low symmetry of the A20 lattice, its parameters can

be tuned to produce other lattices of higher symmetry. These include those observed at
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other values of ns:nl and temperatures in this study, such as BCC and FCC. More details

on all common lattices found in this study can be found in the Supplemental Material.

For almost all crystals listed in Table 4.1, a simple analysis of the potential energy

landscape of a unit cell demonstrates why each lattice type is favorable at a given ns:nl

ratio. The landscapes were calculated with pairwise potentials between the large particles

and one interactive chain bead, using the same method as described in [135]. The potential

energy of a given point in a unit cell is the sum of the pairwise potential energy between a

test particle (one interactive bead) located at that point within the unit cell and all large

particles in the current and surrounding unit cells that contribute to the test particle’s

energy. This method only accounts for interactions between the large particle lattice and

one interactive bead, and therefore does not take into account any small particle-small

particle interactions or lattice vibration. However, even with these simplifications, the

calculated energy landscapes can shed light on the spatial distribution of the particles.

Each energy landscape shows potential energy wells (the most favorable locations for the

interactive beads) and potential energy plateaus near zero (the least favorable locations

for the interactive beads). For almost every lattice, the simulation results show that when

the sublattice is localized, the interactive ends spend the most time in the energy wells,

and the centers of the small particles spend the most time on the energy plateaus. This

means we can predict the location of small particles once we know the unit cell of the

large particle crystal, by identifying the location of the energy plateaus. The existence

of these energy wells and their non-spherically symmetric distribution around the energy

plateaus also highlights the importance of separation between the attractive component

of the small particles and their cores, which in this case is due to the grafted chains.
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The fact that an analysis of a static energy landscape calculated with only small

particle-large particle interactions can accurately identify the locations of the small parti-

cle centers indicates that the small particles do not substantially interfere with each other.

A more detailed analysis of the BCC case can be found in Lopez-Rios et al. [135], and a

visual comparison between the energy landscape of a unit cell and the location of small

particles can be found in the Supplemental Material. There is one important exception:

the FCC energy landscape shows plateaus at the octahedral and tetrahedral sites (Wyck-

off positions 4b and 8c, respectively). However, we observe the small particles localizing

at the 32f sites, where the energy plateaus are much smaller. In our systems that result

in FCC crystals, small particles never localize at the octahedral sites, and they localize

at the tetrahedral sites only once the 32f sites are full (at ratios higher than ns:nl = 8:1).

We hypothesize that this is because the distance from the 32f sites to the large particles is

shorter than the other sites which is needed to maintain a stable crystal with our system

of short-range interactions. Additionally, there are fewer 4b and 8c sites in an FCC, and

for the ns:nl ratio that would have filled those sites (3:1), there are more energetically

favorable crystals available.

Finally, as the number of small particles in the lattice increases (larger ns:nl ratios),

the energetic interaction between each small particle and the surrounding large particles

becomes weaker and the packing density of large particles decreases. This can be seen

in Fig. 4.3, which shows the average small particle-large particle interaction energy and

system density for each of the common crystal lattices observed in our system. Almost

all simulations shown in Fig. 4.2 are included. The number of large particles with which
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each small particle can interact decreases with increasing lattice symmetry; see the Sup-

plemental Materials for corresponding simulation data. For example, a BCT lattice with

c/a = 2 has 8 interstitial sites, at which the small particles can interact with 4 or 5 large

particles. Meanwhile, a BCC unit cell contains 12 interstitial sites, and a small particle

at any of those sites can interact with 4 large particles. Because BCT and BCC unit

cells each contain 2 lattice sites, the favorable sublattice sites are fully occupied at a 4:1

number ratio for a BCT and at 6:1 for a BCC. If there are more small particles than can

fit in the BCT interstitial sites, then the system’s equilibrium lattice cannot be a BCT

and it will instead form a BCC. This pattern holds across all number ratios: systems with

larger ns:nl ratios form crystals containing interstitial sites that are greater in number

but less energetically favorable.

4.2.2. Sublattice delocalization transition entropy and dependence on inter-

stitial site filling

We observe a transition to sublattice delocalization with increased T for almost all as-

sembled crystals. For some values of ns:nl, the transition to sublattice delocalization is a

phase transition accompanied by a change in symmetry of the large particle lattice. For

others, sublattice delocalization occurs as a smooth change rather than a phase transi-

tion. In the subsequent subsections, we detail the signatures of each observed transition

behavior and corresponding lattice properties.

For all values of ns:nl, we see two overarching trends. First, there is strong evidence

that the transition to sublattice delocalization is driven by entropy. This is expected

based on the form of the Gibbs free energy ∆G = ∆H−T∆S, the minimization of which
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Figure 4.3. (a) Average interaction energy Uint./kBT per small particle,
which quantifies the potential energy due to small particle-large particle
interactions, and (b) number density of the large particles ρlarge for each
simulation that resulted in the most common crystals (A20, Ad, BCT, BCC,
and FCC), arranged by crystal lattice type and colored by the value of ns:nl

to emphasize the effect of number ratio on lattice structure. Each data point
represents a simulation under different conditions (temperature, number of
chains, ns:nl), and the data shown comes from nearly all simulations in
Fig. 4.2 that resulted in these common crystals. One very low temperature
simulation with an A20 structure (Uint./kBT < −100) has been removed
for clarity. Values of temperature and number of chains per small particle
are not distinguished here.

determines the equilibrium crystal phase. ∆G is dominated by enthalpy ∆H at low T

and entropy ∆S at high T . Entropic effects have also been experimentally shown to

induce phase transitions of binary size-asymmetric colloidal crystals from energetically to
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entropically favored phases [8]. In our systems, we see this for all types of transition to

sublattice localization.

Second, increasing the chains per small particle increases the temperature at which

the entropic transition occurs, effectively increasing the stability of the lattice. Crystal

transition and melting temperatures increase approximately linearly with the number of

chains per small particle for each value of ns:nl. Therefore, the addition of chains in

most cases simply scales up the magnitude of the interaction between the large and small

particles. There are a few exceptions to this rule, which will be discussed in following

sections.

Note that the phenomenon of sublattice delocalization has been quantified using metal-

licity [20] and occupied volume fraction [135]. However, these metrics are difficult to use

for comparison between crystal phases due to convergence and normalization issues. We

have previously found that sublattice delocalization is highly tied to small particle diffu-

sion and lattice vibrations quantified as median lattice displacement [135], both of which

can be calculated more easily and are experimentally measurable. Therefore, we use these

properties as measures of the degree of sublattice delocalization.

4.2.2.1. Phase transitions driven by lattice vibrations. For systems at low values

of ns:nl, we observe a phase transition with increasing T from a localized, low-symmetry

lattice to a delocalized, higher-symmetry one, specifically BCT → BCC and A20 → BCT.

This is illustrated by a sharp increase in our two descriptors of sublattice delocalization,

the diffusion coefficient (Fig. 4.4(a)) and lattice vibrations (Fig. 4.4(b)). The diffusion

constant D is calculated as the slope of the mean squared displacement of the small

particles, which increases linearly at long time scales. Lattice vibrations |R − ⟨R⟩ | are
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Figure 4.4. Lattice properties of 3:1 and 4:1 systems with 4, 6, 8, and
10 chains per small particle as a function of reduced temperature T (see
Section 4.4). All BCT crystals shown have lattice parameters c

a
= 2 ex-

cept when the small particles have 4 grafted chains. (a) Diffusion constant,
calculated as the slope of the mean squared displacement of the small par-
ticles in their linear (diffusive) regime. (b) Lattice fluctuations, quantified
as the median displacement of large particles from their mean positions.
Post-publication note: the error bars show the fluctuations’ first and third
quartile. The fluctuations are not only larger, but have a larger spread,
once the crystals have transitioned to BCC. (c) Average interaction energy
Uint./kBT per small particle. (d) Average lattice vibrational entropy of the
large particles (as they occupy the crystal’s lattice points). All quantities
show a jump around the phase transition to BCC crystals. Some vary low-T
points not relevant to the transition have been removed for clarity.
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quantified as the median of the magnitude of the displacement of large particles from

their mean positions. Both of these properties increase suddenly at the temperature of a

crystal lattice transition, particularly a change to BCC. It is also interesting to note that

increasing the number of chains per small particle affects only the temperature at which

this change occurs and does not impact the nature of the transition. That indicates that

the addition of chains effectively increases the energetic interaction between the small and

large particles, stabilizing the lattice against sublattice delocalization and melting. The

exception to this is some systems with 4 grafted chains per small particle, which will be

discussed later in this section.

The observed transitions appear to be driven by entropy, and this is consistent with

the observation that crystals lose energetic interactions while gaining entropy when tran-

sitioning to a BCC with a delocalized sublattice. Fig. 4.4(c) shows the average interaction

energy per small particle in each system, as a function of T . As temperature increases,

the interaction energy tends closer to zero, meaning that energetic interactions become

weaker and less favorable. There is also a small jump at the transition to BCC to weaker

energetic interactions. This may occur for two reasons. First, the high-temperature BCC

lattice is generally less dense and therefore contains weaker interactions than the low-

temperature BCT lattice. Additionally, all BCTs shown in Fig. 4.4 with more than 4

grafted chains per small particle have the lattice parameter ratio c
a
= 2. As indicated in

Table 4.1, small particles interact with 4 or 5 neighboring large particles in this type of

BCT crystal, but with only 4 in a BCC, so some lose favorable interactions transitioning

to a BCC. Finally, delocalized small particles also occupy regions between interstitials
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which also decreases the number of interactions with neighboring large particles, as seen

in Supplemental Material, Fig. B.3.

Vibrational entropy shows a similar signature. Fig. 4.4(d) shows the lattice (large

particle) vibrational entropy per large particle Svib. as a function of T , with clear jumps

at the transition temperature. The vibrations of the large particles in a BCT with c
a
= 2

are more constrained parallel to the (001) planes due to denser packing in those planes.

When the crystal transitions to a BCC, the overall density of the system decreases and

vibrations can be larger and more isotropic and contribute more to the entropy of the

crystal (see the Supplemental Material, Section B.3.2., for details). Other forms of entropy

are larger in the BCC phase, as well. Delocalized small particles can occupy a larger

volume than localized ones and therefore contribute to a larger entropy. Finally, BCCs

with ns:nl = 3:1 or 4:1 contain an average of 6 and 4 interstitial vacancies per unit cell,

respectively, and therefore their sublattices also have more configurational entropy as not

all sublattice sites are filled. This is because, as indicated in Table 4.1, the sublattice of a

BCC is filled at ns:nl = 6:1. However, having more interstitial vacancies should increase

the lattice entropy, and the stability of the crystal will be negatively impacted as the

melting temperature will be decreased.

The nature of the transition can be further characterized by examining the behavior

of the entropy of the system. Here, we consider Svib. to be representative of the total

system entropy, as we know from previous work that lattice vibrations are highly tied to

the other significant contributor to entropy, small particle delocalization, and it is more

straightforward to calculate following [151], see the Supplemental Material, Section B.3.6.

A first order phase transition occurs at a discontinuity in the first derivative of the free
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energy, such as entropy. In Fig. 4.4(d), there is a sharp jump in Svib. at the transition to

sublattice delocalization when the number of grafted chains per small particle is greater

than 4, strongly hinting at a discontinuity that would indicate the presence of a first

order phase transition between a localized BCT and a delocalized BCC. This is consistent

with Landau et al. [152], who state that a first order phase transition is expected between

crystal phases when the curve of an appropriate order parameter connecting two phases of

differing symmetry is not continuous. While the large particles of a BCT with c
a
= 2 can

change continuously into a BCC, this does not appear to be possible for the small particles,

based on their interstitial positions. Therefore, it appears that the transition from BCT

with c
a
= 2 and a localized sublattice to a BCC with a delocalized sublattice is first order.

Additionally, estimates of the specific heat capacity corroborate these conclusions and are

given in the Supplemental Material, Section B.3.1.

To further confirm the nature of this transition, we look to the phonon-driven IMT in

vanadium dioxide (VO2). The sudden change from an insulating to a conducting state in

VO2 as a function of T is enabled by a phase transition to a more symmetric and entropic

crystal phase, in which a strong metallic electron-phonon correlation was detected con-

sistent with a Peierls IMT [150]. Budai et al. identified the electron-phonon correlations

using the phonon density of states, which narrows towards lower vibrational frequencies in

the metallic phase, and anharmonic vibrational modes impeding the filling of lower energy

orbitals only in the metallic phase. In our systems that appear to exhibit a first-order

sublattice transition, we also find a bias towards lower vibrational modes in crystals with

a delocalized sublattice. There is also evidence of anharmonic modes due the expanding

lattice parameter of the metallic BCC crystals as a function of temperature. Finally, we



122

calculate a greater momentum exchange in crystals with a delocalized sublattice, which is

most likely due to small particles being more homogeneously distributed throughout the

crystal. See the Supplemental Materials for the vibrational density of states (following

Dickey et al. [153]) and the momentum cross-correlation (following Verdaguer et al. and

Ishida [154–156]) for the case of a system that exhibits a first-order sublattice transition.

The exception to this discussion is the cases in which the small particles have 4 grafted

chains. In those cases, the entropy in Fig. 4.4(d) appears to be continuous but with a

change in slope at the transition, indicating a discontinuity in the specific heat capacity,

rather than entropy. According to Landau et al. [152], a discontinuity in the specific heat

is to be expected for continuous phase transitions, specifically between crystal types than

can continuously change into one another. While we would need more data to confidently

determine the classification of this phase transition, it is also consistent with our intuition

that the phase transition for 4 grafted chains per small particle be continuous. This

is because the low temperature BCT crystals have c
a
=
√

2
3

when the small particles

have only 4 grafted chains. As discussed in Section 4.2.1, we believe that small particles

with only 4 grafted chains cannot stabilize a BCT with c
a
= 2. However, for BCT with

c
a
=
√

2
3
, the interstitial sites appear to be such that it is possible for both the small and

large particles to continuously change to their BCC lattice sites. Note that the 3:1 system

with 4 chains per small particle also transitions through an unclassified BCT; see Fig. B.1

in the Supplemental Material for more information.

Finally, other low-temperature transitions between crystal types are shown in Fig. 4.4,

for example A20 → BCT and Ad → BCT. These transitions exhibit interesting changes in
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Figure 4.5. Lattice properties of 5:1, 6:1, 9:1, and 10:1 systems with 4, 6,
8, and 10 chains per small particle as a function of reduced temperature T
(see 4.4). Data from the 6:1 system is taken from [135] and included for
comparison. (a) Diffusion constant. (b) Lattice fluctuations. (c) Average
interaction energy Uint./kBT per small particle. (d) Average lattice vibra-
tional entropy of the large particles. All show a smooth increase in diffusion
and lattice vibrations, indicating a change to delocalization similar to that
explored in the 6:1 system.

symmetry; however, we do not study those changes here because they are not accompanied

by a change in sublattice delocalization.

4.2.2.2. Smooth change to sublattice delocalization driven by stoichiometry.

At ns:nl near the stoichiometric values for BCC crystals (6:1) or FCC crystals (10:1),

the transition to delocalization of the small particles is gradual and not a true phase
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transition. In these cases, the sublattice delocalizes slowly over a range of temperatures

and the large particle lattice never changes structure. This can be seen in Fig. 4.5. Note

that, again, as T increases, diffusion and vibrational entropy of the large particles increase

at the expense of the magnitude of the interaction energy. We hypothesize that this is

because the BCC and FCC lattices are the most symmetric and stable crystals available

to systems at lower and higher ns:nl ratios, respectively. Specifically, BCC lattices are

entropically stabilized at high T [129, 157], so we do not expect a BCC to transition

to another crystal with increasing T as long as the number of small particles does not

exceed the number of interstitial sites (i.e. a number ratio greater than 6:1). At higher

number ratios, which would otherwise result in BCC lattices with interstitial defects, FCC

crystals are stable simply based on stoichiometry. This will be discussed further in the

next subsection.

The 6:1 system is an exemplar of this behavior and has been studied in detail by

Lopez-Rios et al. [135]. The conclusions of that study were that lattice vibrations and

sublattice delocalization are strongly tied, and the temperature of the onset of both is

dependent on the number of chains per small particle. We have found this to be true in

general for systems that do not exhibit a lattice transition with temperature.

4.2.2.3. Phase transition driven by interstitial defects. For systems with ns:nl =

7:1 and 8:1, between the stoichiometric number ratios for BCC and FCC, we observe a

stable two-phase coexistence between a localized BCC and delocalized FCC. Coexistence

is an indication of a first-order transition between the two phases, and an example is in

Fig. 4.6. Experimental evidence of a BCC/FCC mixture in colloidal crystals was reported
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Figure 4.6. BCC/FCC coexistence in a simulation with T = 1.6, 8 chains
per small particle, and ns:nl = 7:1. Stable localized BCC and delocalized
FCC portions can be seen in (a) a snapshot of the locations of the small
particle centers and (b) the averaged positions of the large particles, colored
by crystal phase.

at a small particle-large particle number ratio between those required for fully BCC or

fully FCC crystal structures [20].

FCC lattices in these systems appear only at high number ratios (7:1, 8:1, 9:1, 10:1), as

can be seen in Table 4.1. This is also consistent with Girard et al. [20], who observed FCC

lattices when the concentration of small particles in solution was high. In our 7:1 and 8:1

systems, the FCC phase appears to be the result of interstitial defect attraction. It has
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Figure 4.7. Fraction of large particles in the simulation in the BCC and
FCC phases for 7:1 and 8:1 systems. The small portion of particles in neither
phase is not shown. Increasing both reduced temperature T and number
of chains per small particle increases the percentage of the delocalized FCC
lattice. These compositions were tested for stability with annealing tech-
niques and at multiple system sizes.

been established that BCC lattices with small particles localized at the usual tetrahedral

sites (ns:nl = 6:1) are stable. At a ns:nl of 7:1 or 8:1, however, a fully BCC system would

contain 2-4 interstitial defects per unit cell, which is energetically unfavorable. As has

been demonstrated by van der Meer et al. [101], interstitial defects in colloidal systems

show long-range attraction. Therefore, the defects in the BCC system gather when there

are strong small particle-large particle interactions (8 and 10 chains per small particle).

At very low temperatures, they collect at a grain boundary; a snapshot of this is shown
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in the Supplemental Material, Fig. B.8. At moderate and high temperatures, they collect

and expand the lattice, resulting in a FCC phase with a delocalized sublattice coexisting

with the BCC phase with a localized sublattice. This is consistent with Fig. 4.7, which

shows that 8:1 systems have a higher FCC fraction at a given T and number of chains

per small particle.

As can also be seen in Fig. 4.7, increasing T results in an increased fraction of the

system in the FCC phase. This indicates that the transition between a localized BCC

and delocalized FCC is at least in part driven by entropy. Each small particle interacts

with 4 large particles in a BCC lattice when localized and only 3 in an FCC lattice (and

even fewer when delocalized due to spending less time at energetically favorable sites).

Therefore, the transition from the BCC phase to the FCC phase results in an energy

penalty, which is compensated for by a gain in entropy in the form of small particle

mobility and lattice vibrations in the FCC phase.

Lastly, increasing the number of chains per small particle results in a higher FCC

fraction, which deviates from the general rule that adding chains simply increases lattice

stability. We hypothesize that this is due to the difference in the unit cell energy landscape

between the BCC and FCC lattices. The energy landscape of the FCC is overall shallower

and more homogeneous than that of the BCC, as there is little overlap between the

attractive regions around the large particles (see the Supplemental Material, Table B.1,

for comparisons). In contrast, the BCC unit cell energy wells are deep and localized in

spaces between large particles. Therefore, it may be that small particles interact favorably

only with FCC energy landscapes when there are more chains and when those chains are

configured more isotropically. This may explain why size-asymmetric binary colloidal
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systems composed of spherical particles have only seen FCC lattices [100, 105] and why

other crystals such as BCC have been observed only with the existence of flexible chains

on the small particles [20, 135].

4.2.3. Stability as a function of number ratio ns:nl

Overall, crystals are more stable and have lower sublattice delocalization when small

particles saturate their interstitial sites. This is highlighted in Fig. 4.8 and Fig. 4.9, which

show diffusion and lattice vibrations as a function of ns:nl for systems with different T -

chain number combinations. For clarity, data is separated by whether there is a crystal

phase transition as a function of ns:nl. A minimum in both quantities appears at 3:1, 4:1,

and 6:1 (for the 3:1, 4:1 and 6:1 systems that form BCC, A20 and BCT lattices with a fully

saturated sublattice). Meanwhile, the 5:1 (BCC crystals) and 9:1 (FCC crystals) ratios

both contain inherent vacancies that diffuse, since BCC and FCC interstitials are fully

occupied at 6:1 and 10:1 ratios, respectively. Additionally, according to Table 4.1, FCC

lattices and their interstitials are less tightly bound than in BCC lattices and therefore

should show more delocalization at a given T . It is not included, but lattice vibrations

also show minima at 3:1 and 6:1 ratios.

The predominant appearance of BCC lattices over the entire phase space explored may

be due to their stabilization by entropy [129]. Their lattice vibrations are isotropic and

this garners them additional structural stability as a function of temperature that enables

a larger degree of sublattice delocalization than other lattices. For similar reasons, BCC

lattices have been suggested as optimal superionic conductors in atomic systems [113].
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Figure 4.8. (a) Diffusion coefficients D and (b) lattice vibrations as a func-
tion of ns:nl for simulation groups that do not exhibit a phase transition.
Both D and lattice vibrations both show a minimum at 6:1, similar to the
metallicity found by Girard et al. [20]. Lines connect points with the same
value of T and number of chains, and lines are not drawn between non-
adjacent points, or if any number of chain-T combination has fewer than
3 data points. Though it is not visually depicted, higher values of D and
lattice vibrations for a given number of chains correspond to higher temper-
atures. Post-publication note: The error bars here show the first and third
quartiles of D and |R− ⟨R⟩|.
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Figure 4.9. (a) Diffusion coefficients D and (b) lattice vibrations as a func-
tion of ns:nl for simulation groups that do exhibit a phase transition. Both
quantities show minima at number ratios corresponding to compound val-
ues for BCC and A20 crystals. Lines connect points with the same value
of T and number of chains, and lines are not drawn between non-adjacent
points, or if any number of chain-T combination has fewer than 3 data
points. Though it is not visually depicted, higher values of D and lattice
vibrations for a given number of chains correspond to higher temperatures.
Post-publication note: The error bars here show the first and third quartiles
of D and |R− ⟨R⟩|.
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4.3. Discussion and conclusions

In summary, highly size-asymmetric binary colloids assemble into a variety of crys-

tals that exhibit varying levels of sublattice delocalization. For temperatures at which

the sublattice is localized, the crystal structure is determined by energetic interactions

between the small and large particles. Crystals with a lower number ratio ns:nl form

lower-symmetry crystals whose unit cell potential energy landscapes contain many deep

wells. As ns:nl increases, crystals become more symmetric and the wells become shal-

lower. As a function of T , we observe different types of entropically driven transitions

to sublattice delocalization. In some cases, this transition occurs along with a symmetry

change of the large particles, always from a lower-symmetry lattice to a higher-symmetry

lattice containing more interstitial vacancies. In others, when the lattice is in a cubic

configuration (these are entropically stabilized) or already contains inherent vacancies,

there is not a phase transition to sublattice delocalization but rather a smooth change.

Additionally, we observe the appearance of different crystal lattices as a function

of ns:nl at constant T . This is consistent with experiments using DNA functionalized

NPs [20, 141] even though hybridization DNA chemistry employed in those studies com-

plicates experiments by including the presence of non-hybridized DNA chains that could

act like depletant particles [20, 141]. In particular, the transition we found from BCT

to BCC as ns:nl increases agrees with Fig. 3 of Cheng et al. [141]; note that in [141],

“valency" is the number of linkers per small particle and not the number ratio of small

(“electron equivalent”) particles to large particles as it was defined in [143] and in Fig.

S29 in the SI of [20].
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We report minima as a function of lattice vibrations and the diffusion constant of

the small particles as a function of ns:nl in Fig. 4.9 and Fig. 4.8. It is tempting to

compare these minima to the minima in metallicity identified by Girard and Olvera de

la Cruz [20], which were found for each crystal phase (BCC, FCC, and Frank-Kasper

A15) and which correspond to the compound value of ns:nl for that phase. The behavior

of the lattice vibrations and diffusion constants is similar, indicating that these reflect

the same underlying phenomenon. However, we found that it is difficult to compare

metallicity values between phases due to normalization and numerical convergence issues;

using the more physically measurable values resolves these problems. Plotting indicators

of sublattice delocalization in multiple phases on the same axis allows us two additional

insights. First, this enables us to compare behavior between phases. We find that there

are still minima at the saturation values for some lattices (A20, BCT, and BCC), but

that the minimum for FCC found in [20] does not appear because competition between

BCC and FCC phases allows for a coexistence not seen in [20]. Second, we see that the

studied assemblies are generally more stable in the form of a BCC lattice, whether their

sublattice is localized or delocalized. Most of the low-symmetry crystal phases transition

to BCC at high temperatures, and BCC only fully transitions to FCC when the number

of interstitial defects is very high. BCC’s greater structural stability is consistent with

observations that BCC crystals are entropically stabilized near their melting point in

colloidal assemblies [129] (even without a sublattice). For these systems, the result of

BCC lattice stability is that these crystals can maintain a delocalized sublattice for a

wider range of temperatures than other crystals. Additionally, Wang et al. predicted that

superionic materials with a BCC structure should exhibit the highest conductivity [113],
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which is of particular interest for applications in solid-state batteries. Our results agree

with this for the case of NPs and confirm the stability of BCC colloidal crystals with

delocalized sublattices.

It is intriguing to find similar behavior at multiple length scales, from sublattice melt-

ing in superionic materials to the insulator-metal transition (IMT) in inorganic materials

to sublattice delocalization in colloidal binary crystals. Although colloidal systems are

more flexible and tunable due to the lack of any sort of charge neutrality constraint on

composition, they exhibit similarities to superionic materials in both structure and de-

pendence on lattice vibrations, explored previously by Lopez-Rios, et al. [135]. There

are also structural and delocalization transition analogs between colloidal crystals and

materials exhibiting an IMT. For example, at low T and 4:1 number ratio, crystal phases

resemble the actinide crystal structures, where increasing the number of chains per small

particle is analogous to increasing the atomic number. Systems with 4, 6, and 8 chains

per small particle assemble into BCT (c/a =
√

2/3), A20, and Ad lattices, which have the

same symmetry as protactinium, α-uranium, and β-neptunium, respectively. Increasing

T of these and other systems, we observe a transition to sublattice delocalization strongly

driven by lattice vibrations. When accompanied by a change of lattice symmetry, this

resembles a Peierls IMT, a transition driven by strong correlations between phonons and

metallic electrons. For colloidal crystals, this can be thought of as a continuous pumping

of momentum of the vibrating large particles to the diffusing small particles. As crystals

become more symmetric, lower vibrational frequencies are available, which prolongs the

exchange of momentum between the two species given their large vibrational wavelengths.

Such tunability as a function of T makes these colloidal crystals possible candidates for
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exploration as colloidal photonic crystals [158, 159]. There are other types of IMT, such

as the Mott IMT, which is driven by the interactions and correlations between the smaller

species. We observe stronger sublattice localization as a function of ns:nl with a greater

number of grafted chains, which is similar to the behavior of metallicity [143]. This may

be seen as a Mott-like transition, where the delocalized lattice may be suppressed by the

addition of grafted chains on the small particles as was alluded by Girard et al. [143].

However, in some cases, the addition of grafted chains may also change the crystal lattice

structure, which complicates this analogy.

There is still more to explore. It is possible that by including the deformability of

the large particles, one might increase the range of accessible phases such as the Frank

Kasper A15 phase [20]. Furthermore, given that lattice vibrations drive the transition

to sublattice delocalization and between host lattices, it would be interesting to consider

how impinging acoustic waves or acoustic shock waves would affect the properties of these

colloidal crystals for further applications.

4.4. Simulation methods

In the model, as described in Fig. 4.1 (and also in [135]), we change the temperature

T , the number of chains per small particle, and the small particle-large particle number

ratio ns:nl. Temperature T is expressed in reduced units, such that T = kBT ′

ε
, where T ′ is

the input temperature and ε is the energy unit of the simulation, in our case T = 1 = 5/3

kJ/mol.

All simulations were conducted at constant number of particles N , temperature T , and

pressure P . The pressure P was the same in all simulations, P = 2 Pa (approximately
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2% of atmospheric pressure). Simulations at low P simplify the possible contributions to

the formation and stability of a crystal such that only two terms remain, energetic and

entropic. The pair potential interactions within our model arise from an attractive Gauss-

ian potential between large particles and the termini of the grafted chains UGaussian(r)

(Eq. 4.1), as well as excluded volume interactions amongst all particles, modeled using

the Weeks-Chandler-Andersen (WCA) potential UWCA(r) (Eq. 4.2). The grafted chains

are bonded with harmonic potentials, and no angle or dihedral potential is employed.

We also used the HOOMD-blue xplor option which prevents artificial discontinuities in

UGaussian(r) as it decays to zero. Parameters used are shown in Table 4.2.

UGauss(r) =− εe
− 1

2

(
r

σgauss

)2

for r ≤ rcutoff(4.1)

UWCA(r) = 4

((σ
r

)12
−
(σ
r

)6)
− 4

(( σ

21/6σ

)12
−
( σ

21/6σ

)6)
for r ≤ 21/6σ(4.2)

where σ = RA +RB is the sum of the radii of the interacting species.

All simulations were initiated with 6×6×6 unit cells in the simulation box with either

an FCC or BCC lattice with lattice parameter a = 60 nm. They were all energetically and

thermally equilibrated using NVE integration and later Langevin integration, respectively,

then depressurized to their final pressure. This sequence lasted 312 ns. Finally, the

simulations were run at their final pressure P = 2 Pa for at least 8.44 µs, the first 1.38

µs of which was considered an equilibration period and not used for analysis. Simulation

code is available upon request.
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Parameter Value

Rlarge particle 10.5 nm

Rsmall particle center 1.0 nm

Rchain bead 1.0 nm

Rinteractive chain end bead 0.5 nm

ε 70 kJ/mol

σgauss 4.8 nm

Rcutoff 8.4 nm

# non-interactive beads/chain 3

Table 4.2. Parameters used in the present study.

To determine the crystal phase resulting from a simulation of a given set of parameters

(T , ns:nl, number of grafted chains, and initial configuration), we analyzed the pair corre-

lation function (g(r)) of the large particles. See the Supplemental Material, Section B.1.1.

for details.

While exploring parameter space by changing ns:nl, it is important to ensure that the

crystal configurations we are reporting are equilibrium configurations. To that end, we

initialized many ns:nl-T -chain parameter combinations in multiple ways, i.e. BCC and

FCC with an unphysically large lattice parameter, about 3 – 5 times any lattice parameter

from an equilibrated lattice structure of this study. If both simulations equilibrated to the

same crystal configuration, we considered that configuration to be the lowest free energy

state and selected only one to include for analysis in our final set. If the simulations had

different results, we annealed both using various techniques described in the Supplemental
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Material, Section B.1.1. until both equilibrated to the same configuration. Note that a

simulation initialized as an FCC has twice as many particles as one initialized as a BCC

(because the FCC unit cell contains twice as many particles), so this procedure of different

initialization is also a test for finite size effects.

Sometimes, this annealing process resulted in one version of the simulation with a

bulk monocrystal and another in a polycrystal with grain boundaries. It has been ob-

served experimentally that annealing polycrystalline colloids does not always results in

a monocrystalline phase, possibly because of the similarity between the melting temper-

ature and the temperature required to remove grain boundaries (see the Supplementary

Discussion of [160]). If, after a few rounds of annealing, the two did not converge to ex-

actly the same configuration, we chose to use the simulation resulting in the monocrystal.

This is because polycrystals are always higher energy than monocrystals, and the purpose

of the current study is the understand bulk crystals based on different parameter sets.

Including polycrystals and the added complexity of grain boundaries is outside of these

bounds.

Finally, finite-size effects are often associated with seeing two-phase coexistence in an

NPT simulation. To test whether simulation size played a role in the existence of two

phase in our 7:1 and 8:1 systems, we ran and annealed all points of 7:1 and 8:1 systems in

at least two initial configurations (usually BCC and FCC). Simulations of different sizes

resulted in very similar BCC to FCC ratios, which are shown in Fig. 4.7. We tested one

system (7:1, 8 chains per small particle, T∗ = 1.3) with 432, 864, and 2000 large particles

and saw roughly the same BCC to FCC ratio in all three simulations.
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System topology for the simulation was built using Hoobas [122]. Simulations were

run with Hoomd-blue [120, 161] and analyzed using MDAnalysis [123, 124]. Images were

created with Mayavi [127] (Fig. 4.1 and 4.6(b)) and OvitoVITOteStukowski2010 (Fig. 4.1

and Fig. 4.6(a)). The g(r) functions for determining crystal type were calculated using

VMD [125], and some crystal structure determination was done using pymatgen [162] and

the AFLOW database [163, 164].

See Supplemental Material at [URL] for all simulation details. An interactive version

of the phase diagrams in Fig. 4.2 with pair correlation functions can be found at https:

//aliehlen.github.io/phase_diagrams/.
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CHAPTER 5

Mechanics of monolayers of superparamagnetic particles

This work is a collaboration between Edward P. Esposito and I. He performed experi-

ments, I performed the modeling and simulations, and we both contributed to the theory

and topics of the paper. In this work we focused on the mechanics of superparamagnetic

elastic sheets actuated with external homogeneous magnetic fields. In the presence of the

field, the sheet will bend in its direction, therefore we show all the modes by which a

square sheet can bend by tuning the strength and direction of the external field. Given

the size of the particles that comprise the sheet, their magnetic response falls in the su-

perparamagnetic regime which is affected by the local curvature of the sheet. This leads

to an enhanced or diminished magnetization simultaneously controlled by local normal of

the sheet and the orientation of the external magnetic field. Furthermore, this work sets

up our on-going work of training curvature in these sheets through cyclic exposure to an

external field and being scanned by a laser once actuated.

The following is a draft that will soon be submitted for review at PNAS. It is repro-

duced here with permission of AUTHORS.
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Actuating monolayers of superparamagnetic particles

Edward P. Esposito,* Hector Manuel Lopez Rios,* Monica Olvera de la Cruz, Heinrich

M. Jaeger
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This is paper is unpublished and will soon be submited for review

ABSTRACT: Magnetically responsive, mechanically flexible microstructures are desirable

for applications ranging from smart sensors to remote controlled actuation for surgery or

robotics. Embedding magnetic nanoparticles into a thin matrix of elastic material enables

high flexibility while exploiting the magnetic response of the individual particles. However,

in the ultrathin limit of such nanocomposite materials the particles become too small to

sustain a permanent dipole moment. This implies that now large magnetic field gradients

are required for actuation, which are difficult to achieve with externally applied fields.

Here we demonstrate through experiment and simulation that monolayer sheets of close-

packed paramagnetic nanoparticles in a uniform applied field can generate large local field

gradients through particle interactions. As a result, a strong collective magnetization is

obtained that leads to large deflections of freestanding sheets already in moderate applied

fields. Exploiting the vector nature of the applied field, we furthermore find that it is

possible to induce more complex curvature and twist the sheets. Finally, we show that

paramagnetic nanoparticle monolayers applied as coatings can generate sufficient force to

deflect strips of non-magnetic material that is several orders of magnitude thicker.
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5.1. Introduction

Since magnetic materials tend to be brittle and stiff [ref], recent work on magnetic

actuation has focused on the bending of composites made of deformable non-magnetic

materials with embedded magnetic particles [165–170]. The particles experience forces

due to interactions with an applied field, and the forces induce the bending when the

structure is sufficiently soft or flexible. For the largest bending, it is desirable to use

ultra-thin materials to maximize their flexibility while at the same time using high particle

density to generate the largest forces.

When the particles have permanent dipole moments, the behavior of such structures

can be well-understood as the thin limit of hard-magnetic soft materials [171–175]. The

mechanics are then straightforward because the permanent dipoles are independent of the

applied magnetic field, so that material deformations involve direct relationships between

the external field, the dipole positions, and the forces experienced by the material [172,

176]. However, once the nanoparticles are too small to retain a permanent dipole moment,

they instead behave as paramagnets [177]. The behavior of such composite materials can

now be best understood as the thin limit of soft-magnetic soft materials [173]. The

mechanics are considerably more complex in this case because dipole moments are no

longer independent of the external field or of each other [178, 179].

Correctly predicting the bending deformation of thin soft-magnetic soft materials re-

quires accurate modelling of the magnetic forces, in turn requiring an accurate description

of how the particle dipole moments align in the applied field. Prior work on large bending

of soft magnetoelastic beams commonly assumes a completely in-material alignment of

magnetic moments together with a linear magnetization response to the applied field [180–
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182]. These assumptions, corresponding to magnetization dominated by dipole-dipole in-

teractions in the small field regime, work well for sufficiently soft or flexible bulk magne-

toelastic materials. However, the magnetic forces generated in the small field regime may

be too small to bend many nano-scale systems which tend to have tensile stiffnesses on the

order of 1−10 GPa [22, 23, 183]. It is also not clear whether in-material magnetization is

a good assumption for quasi-2D systems. Indeed, some recent work on ultra-thin magne-

toelastic systems assumes a magnetization that always follows the applied field [184–186],

corresponding to an independent (or fixed) dipole model as commonly used in studies of

colloidal magnetism [187–189].

In this work, we relax such assumptions about the field or the magnetization. We study

paramagnetic nanoparticle (NP) monolayer sheets through experiments and simulations

to understand their mechanics in the non-linear magnetization regime of large magnetic

fields and forces. Experimental sheets consist of Fe3O4 NPs of diameter 12.25 nm self-

assembled into the 20 µm × 20 µm square NP sheets pictured by TEM and optical

microscopy in Fig. 5.1B. Each NP’s surface is coated with a single layer of short oleic

acid molecules. These ligand molecules act as spacers and provide the elastic matrix that

holds the sheets together by van der Waals interactions between ligands on neighboring

particles (1.75 nm around each particle; visible in the TEM image as the light gray region

between the darker gray nanoparticle cores)[23, 190]. NP sheets that have torn partially

free from the copper support, as highlighted in white in Fig. 5.1B, are subjected to uniform

external magnetic fields Bext generated by permanent magnets as depicted in Fig. 5.1C.

The sheets’ surface height z(x, y), and especially the free corner deflection δ, is measured

by confocal microscopy as the field is varied. Fig. 5.1D shows the initial and final state
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of a NP sheet simulated by Molecular Dynamics (MD). Each NP is modeled directly in

the simulation, having its own dipole moment vector mi, oriented at an angle θm,i from

the vertical. Simulated NPs are separated from their immediate neighbors by a center-to-

center rest distance of r0 = 15.75 nm just as their counterparts in the experiments. We

allow the dipole moments to evolve freely according to both the external magnetic field

and the field generated by all other dipoles [187].

Using moderate-to-large fields in which NP magnetic moments approach saturation,

we observe the NP sheets bending far into the non-linear regime. Although we apply

uniform magnetic fields, the system nevertheless experiences large forces due to the high

density of dipoles. We find that neither the dipole-dipole nor the Zeeman interactions

dominate the induced magnetization, and the trade-off between them, especially with

saturating particles, leads to non-trivial magnetization states not conforming to either

limit. We show how the induced dipole moments depend on the local configuration of

the sheet and use them to calculate the magnetic forces. By comparing deflections from

experiments and simulations, we find a master curve that predicts the deflection of such

a system for various magnetic and elastic parameters. We then extend these findings by

demonstrating how dipole forces can generate not only bending deflections but also twist

and, when applied in ultrathin coatings, how they can produce forces sufficiently strong

to actuate much thicker non-magnetic sheets.

Theoretical Background

A magnetoelastic sheet composed of discrete magnetic particles embedded in an elastic

medium can be characterized by its configuration, the set of all particle locations {ri}, and
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Figure 5.1. NP Sheet formation and measurement. (a) Self-assembly
and deposition of nanoparticle sheets in schematic. (b) Characteristic TEM
(left) and optical (right) micrographs of NP monolayer sheet on a copper
TEM grid. Sheets that have torn partially free from the copper, as the one
highlighted in the right image, are potentially mobile and are measured in
subsequent experiments. (c) Experimental schematic. NP sheets on TEM
grid are subjected to magnetic fields generated by permanent magnets in
cylindrical Halbach arrays, with additional magnets added to control the
field strength, measured with a linear Hall sensor. The surface is measured
in each field by confocal reflectance microscopy. (d) NP sheet geometry and
parameters.
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its magnetization state, the set of all particle magnetizations {mi}. When subjected to an

applied field Bext, the system responds by finding a configuration and magnetization state

minimizing a total energy functional that may be separated into static elastic and magnetic

functionals as U({ri}, {mi},Bext) = Uel({ri}) + Umag({ri}, {mi},Bext) [ref]. For a thin

plate, the elastic energy generally separates further into functionals representing decoupled

stretching and bending, Uel({ri}) = Us({ri}) +Ub({ri}) [191]. For a static micromagnetic

system, the magnetic energy will generally separate into terms representing the coupling

of particle magnetization with the external field and with the field generated by the other

dipoles, Umag({ri}, {mi},Bext) = Uzee({mi},Bext) + Udip({ri}, {mi})[ref]. Since Fe3O4

has weak magnetocrystalline anisotropy[192], and since shape effects are minimal for our

quasi-spherical particles, we disregard anisotropy energy. And we disregard exchange

coupling between nanoparticles due to the ∼ 2.7 nm core-core separation, since iron

atoms on neighboring NPs are at least that far apart.

For a system of discrete paramagnets, the magnetizations are coupled to the con-

figuration through some function mi({ri},Bext). We model the nanoparticles as point

paramagnets using a mutual dipole model (MDM), standard in studies of magnetic col-

loids [ref] but uncommon in magnetoelasticity. In particular, we use a magnetization

function

(5.1) mi(Bi) = msatL(|Bi|/Bsat)
Bi

|Bi|
,

where L(x) = coth(x) − 1/x is the Langevin function, Bi = B(ri) is the total magnetic

field experienced by particle i, msat is the saturation magnetization of the nanoparticles,

and Bsat is a parameter measuring how strong a field will nearly saturate the particles
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(related to their initial susceptibility as χ0 = msat/Bsat). Additionally, the total magnetic

field Bi = Bext +Bi,dip at particle i, includes both the external field and the field due to

all of the other dipoles

(5.2) Bi,dip =
∑
j ̸=i

µ0

4πr3ij
[3(mj · r̂ij)r̂ij −mj]

in which rij = ri − rj, rij = |rij|, and r̂ij = rij/rij. Once the magnetization has been

calculated for a given configuration, the dipole forces can be evaluated through the relation

Fi = (mi · ∇) Bi,dip and then used to generate a new configuration (the magnetic force

expression written exclusively in terms of the magnetization, after applying the gradient

to Eq. 5.2, is given in the SI). New mechanical configurations and new sets of magnetic

forces are calculated in alternation until the whole system reaches a steady mechanical

configuration.

Results and discussion

Deflections in Uniform Fields

Fig. 5.2A shows the 3D confocal data for one experimental sheet with and without

magnetic field. Scans are typically taken over a range of external magnetic field strengths

from Bext = 0 to 0.15 T, and Fig. 5.2B shows the surface height along the line trace of

the diagonal depicted in the upper left corner for each strength. The deflection of the free

corner traces a characteristic S-shaped curve as shown in the lower inset, initially curved

for weak external fields, and seeming to saturate for large fields. Fig. 5.2C shows the
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Figure 5.2. Nanoparticle sheet deflection in applied external B-
field. (a) Confocal microscopy scans of a sheet without and with applied
field. (b) Sheet deflection profiles for increasing B. Upper left inset: optical
micrograph of the sheet. Dashed line indicates line scans for the deflection
profiles. Lower right inset: Vertical deflection δ of the free corner of the
sheet, normalized by the length L of the actuatable portion of the profile
(in this case approximately half the diagonal of the square sheet). (c)
Experimental and simulated deflections collapsed by the fitting function
given by Eq. 5.3. Inset: Normalized deflection as a function of applied field
from experiments on different sheets (squares) and simulations for Young’s
moduli from 0.5 to 5 GPa (circles).

results from many such experiments and simulations, collapsed by a fitting function

δ(Bext) = δ∗
Bext

α

B∗α +Bext
α ,(5.3)

a generic class of sigmoid function that is 0 for Bext = 0 and saturates to a value δ∗,

attaining half saturation at Bext = B∗ (generally different from Bsat). The curvature is

controlled by the power α, found to be 1.8 from sheets simulated with different stiffnesses

(see SI for why this particular fitting function was chosen). The inset of Fig. 5.2C shows

the un-collapsed data, together with the fitting functions using α = 1.8 as found in the

simulations. The uncollapsed deflections are normalized by the linear scale L due to the

difference in size between the experimental and simulated sheets.
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Given the particle magnetization function Eq. 5.1, we can understand why some

function like our Eq. 5.3 must fit well to the data. In our sheets with strong forces

between densely-packed dipoles, we can think of the dipole-dipole forces per unit area as

a type of pressure loading. For thin plates generically, at small pressures p the deflection

will scale as δ ∼ p, while for larger pressures, the deflection will instead scale as δ ∼ p1/3

[191]. The pressure here results from all of the induced magnetizations and are not

related to the external field strength in a simple form. Well below saturation however, the

induced dipole moments scale roughly linearly with the applied field, and since the forces

scale as the product of the induced magnetic moments and the dipole field, itself scaling

proportionally with the dipole moments, the pressures scale roughly quadratically with

the dipole moments. If the induced dipole moments were strictly linear in the small field

regime, we would then expect a quadratic scaling of the deflection with the external field

strength and a power of α = 2 in Eq. 5.3. The value found, α = 1.8, is consistent with the

sublinearity of the magnetization function Eq. 5.1. Once the particles begin to saturate

and the induced magnetization stops increasing with the applied field (only reorienting

closer to the external field, see Fig. 5.3 and the subsequent discussion), the forces will

also stop increasing with the applied field. As the magnetic forces change less and less,

the deflection saturates. The saturated value δ∗ from Eq. 5.3 should then be a deflection

corresponding to the largest balance between the magnetic energy (the maximal loading)

and the elastic energy (the maximal deformation). From MD simulations of sheets with

different Young’s moduli, we find that

δ∗

L
≈ exp

−Et3/12(1− ν2)

NmsatBsat

,(5.4)
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where the argument of the exponential is the ratio between the scales of magnetic en-

ergy and bending energy. If the magnetic scale far exceeds the bending scale, magnetic

forces can be large enough enough to overcome the bending rigidity and produce deflec-

tions approaching the linear scale of the sheet. For the softest of our sheets, the largest

measured deflections of δ/L ≈ 0.75 correspond to the free corner of the sheet bending

through an angle of roughly 50◦. In such cases, δ∗/t exceeds 1000, far into the non-linear

plate bending regime. To test whether these fit values of δ∗ correspond sensibly to the

typical stiffnesses of the sheets, we used the saturation deflection values found from fitting

our experimental curves together with other known or presumed material parameters to

calculate a “measured" Young’s modulus E. The distribution of moduli obtained in this

way corresponds well to the distribution of moduli from direct measurements of similar

sheets using AFM indentation tests, following the technique of [193] (See SI for details).

Non-Uniform Magnetization States

An isolated paramagnetic particle responds to an external field through Eq. 5.1 with only

the applied field, as m = msatL(|Bext|/Bsat)Bext/|Bext|, since there is no field from other

dipoles. In particular, its magnetic moment aligns fully with the applied field direction

so that the angle between the moment and the field θm is zero, while the strength of

the moment is m = msatL(|Bext|/Bsat). When many such particles are packed closely

together, the dipole field in Eq. 5.2 becomes appreciable relative to the applied field, so

the total field experienced by the particles may be stronger or weaker than the applied

field, and will generally not be in the same direction as the applied field. Since the dipole

moment follows the total field direction, θm may no longer be zero, while m may also differ
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Figure 5.3. Magnetization direction and magnitude in nanoparti-
cle sheets. (a) Single particle magnetization direction θm from molecular
dynamics (MD) simulations, averaged over local surface orientations θn at
different external field magnitudes. The angles θm and θn represent the
deviations of the particle magnetic moments and of the local sheet normal
from the direction of the applied field, respectively. If θm = π/2 − θn,
then the magnetization remains in-plane. Dots: averages from simulation.
Dashed lines: fitting function described in the text. (b) Magnetization as a
function of local surface orientation for a range of external field strengths.
Note how flat orientations of the sheet tend to suppress the magnetization
due to stronger demagnetizing fields. Inset: Single particle Langevin mag-
netization function. (c) Low-field and high field moment angle, evaluated
directly for the simulation, and using the fitting functions described in the
text for the experiments. (d) Same as (c), but for the moment magnitude.
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from msatL(|Bext|/Bsat). The dipole field experienced by any particle depends strongly on

the position and magnetization of neighboring particles, and the locations of neighboring

particles contributing most to that dipole field can be characterized simply by the local

surface normal. We therefore expect particle dipole moments to vary strongly with the

angle θn between the local surface normal and the applied field. Fig. 5.3A demonstrates

this variation with the local normal of the sheet of 1 GPa stiffness at various external

field strengths (averaged over all particles in the simulated sheet with the various normal

directions), while Fig. 5.3B shows how the magnitude of the magnetization varies. We

find that the strength and direction of the particle moments are well described as functions

of the local surface normal direction θn, irrespective of the sheet’s stiffness (see Fig. S1),

by

m(θn) = m∗ θ
1/2
n

θ∗n
1/2 + θn

1/2

θm(θn) = c0
θn(

π
2

− θn)

θn − θ∗∗n
.

(5.5)

Here m∗, θ∗n, c0 and θ∗∗n are fit parameters that depend on the external field, as well as ma-

terial properties like msat, Bsat and r0. As the sheet rotates into the applied field (i.e. as

the sheet’s normal rotates away from the applied field), the competition between the Zee-

man and dipole energy terms reduces, and so the magnetization directions simultaneously

approach both the tangent plane of the sheet and the applied field. As the external field

strength is increased, the magnetization approaches the field direction more closely at all

orientations of the local normal. This latter behavior is due to the fact that the particles

saturate, limiting the magnitude of the dipole-dipole energy, whereas the Zeeman energy

continues increasing linearly with the applied field. For saturated particles, increasing
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the field strength increases the ratio of Zeeman to dipole-dipole energy, favoring closer

alignment of the particle magnetization directions with the applied field.

Because of the variation of surface normals across the sheet, Fig. 5.3C-D display a

distribution of magnetic moments strengths and orientations. In the free portion where

deflections are large, the normal makes its largest angle with the applied field, and the

strength of the magnetization is largest. The dipole-dipole and Zeeman interactions favor

dipole orientations in similar directions. By contrast, in the fixed portion of the sheet,

which remains relatively flat, dipole-dipole and Zeeman interactions favor magnetization

orientations in competing directions, and the magnitude of the dipoles is reduced as a

result. In all cases, we can understand variation of the magnetic moments in terms of the

changing surface orientation as shown in Fig. 5.3A-B.

That dipole moment directions generally differ from both the applied field direction

and the local tangent plane is a complexity not usually included in prior magnetoelastic

studies. Some past works studying flexible paramagnetic rods assume magnetization al-

ways in the applied field direction [182, 194, 195]. Scherbakov and Winklhofer consider a

beam with distributed paramagnetic material in which the magnetization is confined to

the beam axis. Gerbal et al. consider beams embedded with superparamagnetic particles

[181] and compare a model in which the beams magnetize in the applied field direction

against a model in which they always magnetize along their axis. Their work demon-

strated that only axial magnetization would reproduce their experimental results. The

implicit assumption behind such models is that axial magnetization arises through the

interdependent magnetization of the distributed superparamagnetic material. Although

this could arise from the interactions of a high density of superparamagnetic material,
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we point out that the superparamagnetic material in [181] consists of nanorods which

themselves have a strong axial anisotropy and could be explained also on that basis. In

our quasi-2D MDM system in which the superparamagnetic particles do not have a strong

shape or magnetocrystalline anisotropy[192], despite the high density of particles, we find

that the particle magnetization always lies somewhere between the applied field and the

local tangent plane. The direction of the forces acting on the particles is therefore different

from what either axial or in-field magnetization models would predict, so the deflections

of our system are not well-described by those models.

Magnetic Forces without External B-Field Gradients

After calculating the particle magnetic moments, we may evaluate the magnetic forces

between them. These dipole-dipole forces exist even in a uniform external field due to

the finite size of the sheet. As discussed above, the magnitude of the dipole-dipole forces

depends roughly quadratically on the magnitude of the magnetizations, having a scale

of µ0m2
sat

4πr40
≈ 2.7 × 10−13 N. Experimental fields controlled by permanent magnets use

Halbach cylinder arrays in order to reduce external gradients. The largest gradients in

the experiments were roughly 200 T/m, which can produce forces only up to 1.45× 10−16

N for fully saturated particles, orders of magnitude smaller than the forces between the

dipoles themselves. We therefore neglect forces due to the gradients in the external field

and assume that the only forces present are due to dipole-dipole interactions.

The direction of the forces depends on the directions of the particle dipole moments.

We therefore expect variation in both the magnitude and directions of the dipole forces ac-

cording to the variations in the dipole moments across the sheet. Fig. 5.4A demonstrates
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Figure 5.4. Non-uniform magnetic pressures. (a) Simulated sheet
at large applied field, with force per particle depicted by arrows. Black
arrows: total force. Green and brown arrows: normal and tangential force
components, respectively. The forces vary across the sheet, the strongest
are near and at the edges. The normal and tangential components are
typically of similar magnitude, as seen from the zoomed-in view, where the
tangential component even exceeds the normal component. (b) Deflection
of an initially flat sheet using only the normal or only the tangential force
components. Black circles: Data from full magnetoelastic simulation as in
Fig. 5.2. Green and brown circles: Purely elastic simulation applying only
the normal (green) or tangential (brown) force components found in the
magnetoelastic simulation. (c) Normal force distribution at low and high
fields for simulated and experimental sheets. These images show the non-
uniform nature of the magnetic forces, with normal pressures even changing
sign across the sheet.
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this variability with an example of a sheet deflected at moderate field strength. Arrows

representing the force per particle are superposed on the configuration of the sheet, with

black arrows representing the full force while green and brown arrows represent the nor-

mal and tangential force components. It is most striking that the magnitude of forces on

the edge particles is much larger than on particles within the bulk area, and also that the

total force is significantly different from the normal force, since both the green and black

arrows are visible. We show a zoomed view of one region of the bulk to emphasize that

the tangential forces are a significant component of the total force, indeed even exceeding

the normal force for the region chosen.

To test the importance of the normal and tangential force components, we performed

purely elastic simulations using only one force component from the magnetoelastic simu-

lation at each field strength and compared the deflections from these partial simulations

with those from the full simulation. The results are presented in Fig. 5.4B. Despite the

normal and tangential forces’ being of similar magnitude, the normal forces alone very

nearly reproduce the full magnetoelastic deflections, consistent with the the analysis of

magnetoelastic work and energy given by Brown [196]. Perhaps more surprisingly, the

tangential forces alone produce sizable deflections of opposite sign, likely an indication

of the buckling instability of the flat sheet under compressive forces. Note how the true

deflection is not simply the sum of the two partial deflections in this non-linear deflection

regime. Because they are the essential forces behind the measured sheet deflection, Fig.

5.4C shows the distribution of normal forces across the sheet, recast as a dimensionless

normal pressure p̃ ≡ pL
Et

. The scaling used here accounts for the different sizes of the

experimental and simulated sheets. Since the deflection scales cubically with the pressure
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load as δ3 ∼ pL4

Et
according to the Föppl-von Kármán plate equations [191], the dimen-

sionless deflection δ̃ ≡ δ
L

therefore scales with the pressure as δ̃3 ∼ pL
Et

. The magnetic force

distributions are visually striking because of their non-uniformity. The normal forces not

only vary in magnitude but even change sign across the sheet.

Deflections under Different Field Orientations

One initially surprising observation in our experiments was that vertical magnetic fields

cause the sheet to bend in the same direction regardless of the polarity of the field. This

suggests that the nanoparticles do not retain their magnetic moments in the absence of

the external field, or at the very least that all experimental fields were larger than the

coercive field for the particles. Under the transformation mj → −mj in which all dipoles

change their sign, the dipole field will also changes its sign. The force on each dipole will

then remain unchanged: Fi → (−mi · ∇) (−Bi,dip) = (mi · ∇) Bi,dip. We therefore expect

that only the strength and the axis of the external field impact the deflection of the sheet.

To determine the effect of changing the direction of the applied field, we now fix

the strength but allow the field to adopt any orientation in space in our simulations,

with results as depicted in Fig. 5.5 for a 1 GPa sheet. The field is then described by

Bext = Bext(sin θ cosϕ x̂+ sin θ sinϕ ŷ+ cos θ ẑ). If we fix the field at some polar angle

θ and allow the field to rotate around the vertical axis so that ϕ varies from 0 to 2π, we

see that the free corner of the plate achieves its maximum deflection when the field points

along the x̂+ŷ√
2

axis (ϕ = π/4), and that the deflection of the free corner tends to zero as the

field approaches the −x̂+ŷ√
2

axis (ϕ = 3π/4). This effect is displayed in Fig. 5.5B. If instead

we fix the azimuthal angle ϕ and vary the field’s polar angle from θ = 0 to θ = π, the field
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Figure 5.5. Twisting sheets by changing the applied field orienta-
tion (a) Deflections in fields with general direction are characterized by two
modes: mode i corresponds to deflection along the free diagonal; mode ii
corresponds to twisting around the mode i diagonal, leading to undulations
in the perpendicular direction. Red, blue: positive and negative deflections
respectively. (b) End deflection of 1 GPa sheet at constant field strength
(here, Bext = 0.12 T) but varying direction. At fixed ϕ and increasing θ, the
field rotates away from the vertical and deflection decreases. At fixed θ but
increasing ϕ, the field rotates around the vertical axis, and for fields with
substantial components in the xy plane, end deflection vanishes abruptly
as the field rotates away from the free corner. (c) Deflection profiles for
different θ at ϕ = π

4
, corresponding to mode i. Inset: 2D projection of sim-

ulated sheet with θ = π
12

and ϕ = π
4
; profiles evaluated along dashed line.

(d) Deflection profiles for different ϕ at θ = 5π
12

, corresponding to mode ii.
As ϕ approaches 3π

4
, undulations indicate twisting of the sheet. Inset: 2D

projection of simulated sheet with θ = 5π
12

and ϕ = 3π
4

; profiles evaluated
along dashed line. (e) Curves indicate amplitude of mode i (orange) or ii
(purple) as a function of ϕ for fixed θ, where darker lines of either color
correspond to lower θ. The contribution of modes i or ii can be tuned by
re-orienting of the field.
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rotates away from the vertical, passing through the diagonal of the sheet from the fixed

corner to the free corner. The deflection of the free corner of the sheet follows the applied

field as shown in Fig. 5.5C, achieving its maximum magnitude for fields fully normal to

the flat sheet, and passing through zero when the field is in the plane of the flat sheet. For

this field orientation (i.e. θ = π/2 and ϕ = π/4), the deformations are wholly confined

to the plane of the sheet so that it remains flat everywhere. In this case however, since

the field retains some component in the vertical direction, the sheet deforms out of the

neutral plane by twisting about the x̂+ŷ√
2

axis as much as possible in order simultaneously

align the dipoles with each other and with the field. The free corner of the sheet remains

at zero, and the maximum out-of-plane deflection of the sheet is attained along the free

edges.

Since we find that the deflection of the free corner does not fully characterize the

out-of-plane deformation of the plate, we therefore cast the sheet’s configuration as a su-

perposition of two deformation modes, a bending (i) and a twisting (ii) mode as demon-

strated in Fig. 5.5A. Fig. 5.5B shows the profile of one of the free edges of the sheet. The

two modes are well described by cubic and sinusoidal functions respectively,and the full

shape by their superposition. Fig. 5.5C shows the amplitude of each of the two modes,

either α or 1 − α times the maximum deflection in each mode, as ϕ is rotated around

the vertical axis. The different traces correspond to different values of the polar angle θ.

Mode i dominates the deflection for most field orientations, but vanishes once the field

approaches the fixed diagonal.
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Figure 5.6. Actuating NP coated Aluminum. Fe3O4 NPs can be used
as a surface coating to actuate non-magnetic structures. We demonstrate
this by deflecting an aluminum sheet using a nanoparticle monolayer as
depicted in the schematic. The bottom image is a composite micrograph
(magnified 50x) of the free end before and after application of the field. The
Al sheet is ∼ 1000 times thicker than the monolayer and 50 − 100 times
stiffer. Despite this, the NPs generate forces strong enough to deflect the
Al sheet by δ/tAl ∼ 1.

NP Sheets Coating Elastic Structures

NP sheets are able conform to high aspect ratio surface topographies [197], and could

therefore find wide use as magnetically responsive coatings to actuate many other types

of nanostructures. As a demonstration of the strength of field-induced forces that can be

produced by self-assembled Fe3O4 NP sheets, we use them to coat much thicker sheets of

non-magnetic material. Fig. 5.6 demonstrates this with an aluminum sheet of thickness

tAl ∼ 15 µm and Young’s modulus EAl ∼ 68 GPa being deflected in a uniform external
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magnetic field of strength 0.12 T due to the dipole pressures generated by a NP monolayer

of thickness tNP ∼ 12.25 nm and typical stiffness of 0.5 − 1 GPa deposited on the Al

surface. Being tAl/tNP ∼ 1000 times thicker and EAl/ENP ∼ 50 − 100 times stiffer than

the NP sheet, the aluminum dominates the bending response of the combined structure.

Nevertheless, the high areal density of NPs leads to dipole forces sufficient to deflect the

aluminum sheet by δ/tAl ∼ 1. This response can be further enhanced by sequentially

depositing additional NP monolayers.

Conclusions

Our results demonstrate that thin elastic sheets comprising densely packed paramag-

netic nanoparticles can exhibit large deflections deep into the non-linear plate bending

regime even in uniform applied magnetic fields. We find that deflections follow a charac-

teristic δ ∼ B1.8
ext curve for small fields while saturating for large fields, so that bending

deflections measured for sheets with different magnetic and elastic parameters can be

collapsed onto a single master curve (Fig. 5.2). We show how, as a result of strong inter-

particle dipole interactions, the magnetization response depends on the sheet’s orientation

with respect to the applied field (Fig. 5.3), and that the distribution of these magneti-

zations across the sheet leads to large non-uniform forces (Fig. 5.4). We also show how

rotation of the applied field can generate more complex actuation, such as twisting (Fig.

5.5).

Constituting the ultrathin limit of self-assembled nanoparticle systems, the monolayer

sheets discussed here are the thinnest nanoparticle based magnetoelastic composites with

paramagnetic elements. Magnetic NP sheets allow external control and actuation of
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nano-scale systems due to their thinness and bending flexibility, and they may be used

independently or as coatings in a wide range of potential applications for magnetically

controlled micro-mechanical or micro-robotic systems.

Materials and Methods

Experiments

12.25 nm Fe3O4 nanoparticles are synthesized according to the Sun protocol [198] (see SI

for full description). With diameter substantially less than 25−30 nm, these particles are

well into the superparamagnetic size regime for Fe3O4[199]. Following the synthesis, the

particles are dispersed in toluene. Quasi-2D nanoparticle sheets are then made through

an evaporative self-assembly process adapted from earlier work involving sheets of thiol-

coated gold nanoparticles [193]. Briefly, a support structure (typically a copper TEM

grid with 20 µm square holes) is immersed in a 50 µL droplet of Ultrapure water on a

PTFE substrate. A 1 µL droplet of the toluene/NP solution is gently contacted with the

water droplet. The toluene coats the water droplet in a thin film, and as it evaporates

the nanoparticles in the toluene film are trapped at the air-water interface. Following the

rapid evaporation of the toluene and the formation of the NP monolayer at the air-water

interface, the water evaporates slowly, gently draping the nanoparticle layer onto the sup-

port structure within the water droplet. Once the water completely evaporates, portions

of the nanoparticle layer that have torn partially free from the support structure (typically

a square with two adjacent free edges) are identified and scanned with a LEXT OLS-5000

confocal surface scanning microscope, with x-y resolution of 125 nm × 125 nm per pixel

and nominal z resolution of 10 nm. Since the interparticle separation is 15.75 nm, there
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are roughly 80 NPs per pixel. Scans are performed with varying external magnetic field

strengths and orientations using permanent magnets. Quasi-uniform magnetic fields are

generated with arrays of NdFeB magnets in the dipolar cylidrical Halbach configuration,

to which larger magnets can be added to generate stronger fields. To avoid contact with

the microscope objective, half cylinders are used for generating vertical fields. Small and

large half cylinders are used with additional magnets and in combination with each other

to generate the different field strengths, which are measured with a linear Hall sensor.

Gradients due to permanent magnets are measured with a pair of Hall sensors. The

largest such gradients could lead to maximum per-particle forces, for fully saturated par-

ticles, that are still ∼ 100× smaller than the typical dipole-dipole forces described in the

main text. See SI for more on the production and measurement of the fields, and the

potential impact of external gradients.

Simulations and Modelling

MD simulations are performed using ESPResSo v4.2 [200]. The simulated sheets consist of

a triangular lattice of hard spheres making up a square of side length 180 particle diameters

resulting in a total of 22680 particles. Simulated sheets correspond to a physical size of

2.2 µm × 2.2 µm. These sheets are initially flat and all particles along the x̂ and ŷ

axes are held fixed to mimic the experimental boundary conditions. As in earlier work,

particles interact elastically with their neighbors through a two-body stretching potential

us =
√
3
4
Et(r − r0)

2, where r0 is the inter-particle separation at rest, and through a four-

body bending potential ub = Et3

6
√
3(1−ν2)

[1− cos(θ)], penalizing angular deviations between

the normal vectors of neighboring elements [201]. Particles are assumed to behave as
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point paramagnets. We use a mutual dipole model in which the field due to all the other

dipoles in the sheet is also included when determining the dipole magnitudes and directions

[187, 202, 203]. To determine the particle magnetizations, we solve the set of N coupled

non-linear equations mi = msatL(|Bi|/Bsat)B̂
i directly. This last step sets the limit on

computational speed by far. However, the MDM converges to the same configuration and

magnetization regardless of whether the sheet is initially flat or bent, so to generate a

relatively quick initial estimate of the final configuration and magnetic state we use an

alternate model not previously seen in the literature, which we call the semi-Independent

Dipole Model (sIDM). Whereas the MDM assumes mi = msatL(|Bi|/Bsat)B̂
i, the sIDM

instead assumes mi = msatL(Bext/Bsat)B̂
i, indicating that the direction of the dipoles

depends on the total field while the magnitude of the dipoles depends only on the external

field. Because the sIDM avoids the nonlinearity connected with the Langevin function,

this calculation is much faster. In practice, it can produce non-physical magnetization

states however, and these are only resolved once we switch to the full MDM. Despite this,

the final deflections from the sIDM are close to those from the MDM, and in this way the

sIDM provides a good way to estimate the behavior of a very large system. As shown in

Fig. 5.3 a mathematically flat sheet will not magnetize in a vertical field, so simulations

begin with a slight offset to the vertical magnetic field for the first 200 time steps, before

finally using a purely vertical field. See the SI for furthe
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CHAPTER 6

Manipulating the medium to create patterns

This work is a collaboration between Shih-Yuan Chen and I. The experiments were

performed by Shih-Yuan, while the simulations and theory were realized by me. We

both wrote the paper. In this work we wanted to understand what was the range of

the hydrodynamic ineraction of a single driven particle within a suspension of passive

particles. The motivation being that this system has the potential for training so long a

single particle can manipulate the configuration of surrounding passive particles. However,

for this system to truly be trainable, particle configurations would need not be erased by

thermal fluctuations after being altered by the driven particle. Future work, would consist

in adding attractive interactions among all particles to test whether this systems is indeed

trainable.

The following was originally published in Soft Matter in 2024. It is reproduced here

with permission of AUTHORS, and the PUBLISHER.

Supplementary material associated with this chapter can be found in Appendix C.
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ABSTRACT: The interaction between passive and active/driven particles has introduced

a new way to control colloidal suspension properties from particle aggregation to crys-

tallization. Here, we focus on the hydrodynamic interaction between a single rotational

driven particle and a suspension of passive particles near the floor. Using experiments and

Stokesian dynamics simulations that account for near-field lubrication, we demonstrate

that the flow induced by the driven particle can induce long-ranged rearrangement in a

passive suspension. We observe an accumulation of passive particles in front of the driven

particle and a depletion of passive particles behind the driven particle. This restructuring

generates a pattern that can span a range more than 10 times of the driven particle’s

radius. We further show that size scale of the pattern is only a function of the particle’s

height above the floor.

6.1. Introduction

Colloids have been extensively used to explore the relation between structure and

function of materials. Their structure is easily observable with a simple optical microscope

https://doi.org/10.1039/D4SM00010B
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[205–207], and colloidal particles can be actuated to roll [208], spin [209], and oscillate

[210]. Moreover, one can easily tune particle interactions in a colloidal system using

straightforward modifications to particle size, shape, and surface chemistry, which allows

for the design of exotic material properties such as tunable shear-jamming [211] and

patterned wettability [212].

Generally, self-assembly is driven by interparticle forces and entropic forces. External

applied fields, however, unlock self-assembly pathways that are otherwise inaccessible

including avalanches [213] and configurations that encode memory [214, 215]; indeed,

the soft matter community has established that self-propelling particles can tune self-

assembly [216, 217]. Additional degrees of freedom, such as in mixtures of active and

passive particles, enhance the phase space of microstructures [218–220]. The motion

of self-propelling particles has been shown to enhance the diffusivity of passive particles

[221, 222], create clusters of passive particles around self-propelling particles [223, 224], or

induce phase separation between particle types [225–230]. Moreover, as the self-propelling

particles exert forces on their surroundings, they continue reconfiguring the local structure

already built [224, 231]. When active particles are added to an equilibrium passive crystal

structure, their activity accelerates the annealing process, leading to large-scale single

crystals [232]. Through active-passive interactions, active particles via self-diffusiophoresis

[233] and driven particles via external fields have the potential to tune the aggregation

of passive particles [216, 217], and ship cargo passive particles to desired locations [234,

235]. These examples demonstrate the complexity of active-passive and driven-passive

interactions. To understand how these particles reshape material structure, it is crucial

to understand how they interact with their surroundings in a colloidal suspension. In
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many cases, hydrodynamics plays a significant role to explain the restructuring and the

emergent patterns [224, 236, 237].

In this work, we examine how a driven particle, called a microroller [238, 239], im-

mersed in a passive particle suspension can restructure its surroundings through exper-

iments and Stokesian dynamics simulations with lubrication corrections (see Materials

section). Here a microroller rearranges the passive particles through hydrodynamic inter-

actions, creating an accumulation zone around itself and a depletion tail in its wake. We

observe that a steady-state pattern emerges from these interactions, and this pattern is

10 times larger than the microroller radius and is three dimensional in nature. We note

that in striking contrast to restructuring created by actively dragging a particle through

a suspension [240], the highest concentration of passive particles in the accumulation area

is roughly 10 microroller radii away from the microroller location. This underscores the

mechanism of restructuring as the long-range flow field generated by the microroller. Due

to the sensitive dependence of hydrodynamic interactions on the particle’s height above

the chamber floor, we find that the structure of the pattern is modified by changing the

height of either the driven or passive particles.

6.2. Results

We experimentally study suspensions of passive particles in water doped with magnet-

ically driven particles, named the microrollers, see Fig. 6.1(a). Both the microrollers and

passive particles are denser than water, so they sediment to the floor of the suspension’s

container, forming a quasi-2D layer of particles. Both types of the particles share the
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Figure 6.1. Microrollers alter microstructure in passive suspen-
sions. We dope driven particles (microrollers) in a passive colloidal suspen-
sion, as demonstrated in the schematic (a) A small quantity of microrollers
(driven particles) are added to a suspension of passive particles. (b) Mi-
crorollers contain a permenant magnetic moment, m, and are acuated by
applying a uniform rotating magnetic field. This actuation generates strong
advective flows, which scale with hroller, the height of the particle above the
surface; these flows are the driver for restructuring the passive suspension.
(c) Microrollers restructure the passive suspension by modulating the mean
local density; this resructuring becomes more and more apparent as we
average over longer and longer times. (d) Restructuring of the passive sus-
pensions results in the emergence of a steady-state pattern. Left image is
the experimental result, in which brighter areas indicate a higher local in-
tensity, which is correlated to a higher concentration of passive particles.
Right image shows the result of Stokesian dynamics simulations, which re-
produce the same pattern seen in the experiments.
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Figure 6.2. The length of the new structure is independent of the
microroller’s velocity (the rotatinal frequency) and the area frac-
tion of the passive particles. (a-b) Pattern length at two different ac-
tuation frequencies: (a) 5 Hz and (b) 13 Hz. We find that the pattern size,
Lpattern, is independent of microroller velocity. (c-d) Similarly, altering the
mean area fraction of passive particles has no effect on Lpattern. (c) ϕ = 0.02
(d) ϕ = 0.19. (e) To quantify Lpattern, we draw a box across the microroller
along the x axis of the pattern and measure the average intensity in the y
axis, as illustrated in the inset; the pink dashed line indicates the center of
the box. Then, we find the peak of the intensity (the blue open circle) in
front of the roller (the orange circle), and measure the distance from the
peak to the microroller (the blue double arrow). (f) Lpattern is independent
of both microroller velocity (actuation frequency f) and ϕ. We find the
average Lpattern is 8.9± 0.9 µm (the black dashed line in (f)).

same size (2 µm in diameter). Due to the thermal fluctuation and electrostatic repul-

sion, both types of particles do not contact the floor but instead hover above the floor

surface at an equilibrium height, hroller and hpassive respectively, as shown in Fig. 6.1(b).

The microroller’s translational velocity is determined by two parameters, the microroller’s

height hroller and its rotational frequency f . We select the rotational frequency to be be-

tween 5 Hz to 13 Hz in our experiments so that the speed of the microroller is linearly

proportional to the rotating frequency (see SI.1).
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In the driven-passive colloidal mixture, passive particles are initially distributed ran-

domly around the microroller in the xy plane. When the external rotating magnetic field

is on, the microroller is translating, and the flows generated by the microroller redistribute

the passive particles (see Movie S1). We observe that the passive particles are restructured

as follows: there is an accumulation of passive particles in the region of the direction of

motion of the microroller (in the +x̂ direction), while there is a depleted region opposite

to the direction of translation (in the −x̂ direction). We note that the average microroller

speed is constant (see SI.2); the system is in a non-equilibrium steady state.

To quantify the restructuring, we calculate the time averaged number density of passive

particles ⟨ρpassive (r)⟩t in the microroller’s frame of reference. In the microroller’s frame, the

microroller is static, and it is the passive particles that move around the microroller (see

Movie S2). A pattern in the passive particle distribution emerges around the microroller

as we average more and more frames, as shown in Fig. 6.1(c). Brighter regions indicate a

longer presence of passive particles while darker regions signal the opposite. The emergent

pattern reveals a depletion of passive particles in the −x̂ direction to the microroller, and

a greater presence of passive particles in the vicinity of the microroller. Surprisingly, the

peak of the accumulation (the brightest location) in the pattern in the +x̂ direction to

the microroller is much larger than the particle itself, approximately 10 times the radius

of the microroller (10µm).

To complement our experimental work, we study this system computationally using

Stokesian dynamics with lubrication corrections (see Movie S3 for the microroller in the

lab frame and S4 for the microroller in the microroller’s frame). Therefore, near-field

or lubrication corrections are included between particles in simulations. We also model
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particles as perfectly rigid spheres to account for their finite size. Previous work has shown

that a microroller rolls at constant angular velocity imposed by a rotating magnetic field

rather than experiencing a constant torque [241]. Thus, to resemble experiments we study

a rotating particle with constant angular velocity in a region where we have initially

fixed the area fraction of passive particles. For suspensions at finite temperature we

stochastically evolve the system to solve for Brownian dynamics and correctly account for

thermal fluctuations. Importantly, the height of the microroller (hroller) sets its velocity

profile as a function of angular velocity. Obtaining hroller from experiments is challenging,

thus we use the velocity profile (the microroller’s velocity as a function of rotational

frequencies) to determine ⟨hroller⟩ to use in simulations.

Moreover, we use Gaussian smoothing in all ⟨ρpassive (r)⟩t using a variance the size

of the passive particle. This adds particle areal effects in ⟨ρpassive (r)⟩t, and thus can

be comparable to the experimental emergent pattern. In Fig. 6.1(d), we see that the

simulation reproduces the same pattern as observed in experiments, and the areas of high

intensity in experiments correspond to areas of high particle density in simulations.

In order to determine what parameters control the features and the size of the emergent

pattern, we carry out experiments by varying the rotating frequency f from 5 Hz to 13 Hz,

which linearly increases the microroller speed. We also perform experiments by varying

the area fraction of passive particles ϕpassive from 2% to 19%. As the temperature, particle

density, and the electrostatic repulsions remain the same, hroller is kept at hroller = 1.34 µm

in all experiments. In no case do we observe that the pattern changes, see Fig. 6.2(a-d).

To quantify our results, we compute a characteristic pattern length Lpattern by measuring

the intensity across the pattern along the x axis and define Lpattern to be the distance
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between the microroller center to the intensity peak, see Fig. 6.2(e). As expected from

the experimental images, in Fig. 6.2(f), Lpattern is invariant with respect to ϕpassive and f .

The results demonstrate that the pattern length is independent of the microroller speed

or the area fraction of passive particles at a given hroller.

Using simulations, we also investigate the influence of changing hroller. The simulations

are carried out at f = 10 Hz and ϕ = 0.17 at T = 0K and T = 293K. The results are

shown in Fig. 6.3. We measure the peak area fraction of the pattern to the microroller to

extract Lpattern. As shown in Fig. 6.3(c), Lpattern is directly proportional to hroller, even in

the the presence of thermal fluctuations. Both the flow field generated by the microroller

and the microroller speed depend on both hroller and f . As shown in Fig. 6.2, Lpattern is

independent of f for a given hroller. Therefore, the change of the flow field as a result of

modifying hroller must be the reason why the pattern changes. We will further elaborate

the pattern mechanism in the Discussion section.

6.3. Discussion

To understand the origin of the emergent pattern from experiments we must determine

the principle stresses at play in suspensions at finite temperature. Hydrodynamic forces

between particles can be impacted by thermal fluctuations as they will disrupt particle’s

trajectories along streamlines. To estimate the relative influence of thermal fluctuations

compared to the advective flows, we calculate the Péclet number, Pe = Rpassiveufluid

Dpassive
, where

Rpassive is the average passive particle radius, ufluid is approximately the maximum velocity

of the fluid due to a microroller, and Dpassive is the passive particle diffusion coefficient.

Using the values Rpassive = 1 µm, ufluid = 50 µm/s, and Dpassive = 0.15 µm2/s, we calculate
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(c)

(a)

(b)

Figure 6.3. The pattern length is set only by the microroller’s
height above the floor. We perform simulations at different microroller’s
heights hroller at T = 0K and T = 293K to investigate Lpattern as a function
of hroller. We observe that Lpattern becomes smaller as hroller decreases: (a)
hroller = 1.4 µm, (b) hroller = 1.05 µm, and is identical at T = 0 K and
T = 293 K.
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that Pe = 333 ≫ 1; and thus reveals that passive particle transport is dominated by

microroller-generated advective flows rather than from thermal fluctuations. Therefore,

computationally less expensive simulations at T = 0K are sufficient to understand the

origin of the pattern formation; Brownian motion does not alter the average size of the

pattern.

As this is an advection-dominated system, we focus on the streamlines generated by

the microroller to explain the formation of the emergent pattern. While these streamlines

are three dimensional in nature we will show that it is sufficient to focus on streamlines

in the xy plane to understand the formation of the emergent pattern. Moreover, the

experimental measurements only capture the pattern extent in the xy plane.

We begin by calculating the flow velocity around the rotating microroller in the frame

of the microroller, see Fig. 6.4(a). In the microroller frame, the microroller is stationary

while the passive particles are the mobile species. In the flow profile in the microroller

frame, two different sets of streamlines are observed in the fluid in the vicinity of the

microroller: (1) a set that surrounds and recirculates around a pair of axial symmetric

vortices alongside the microroller (light blue streamlines in Fig. 6.4(a)), and (2) a set that

bounds and bypasses the recirculating region (light purple streamlines in Fig. 6.4(a)). An

additional feature in the flow field is the appearance of two axially symmetric stagnation

points in the front and back of the microroller. These stagnation points are saddle points,

that is the fluid flow is convergent along one direction and divergent in the orthogonal

direction. In our system, the microroller is always driven in the +x̂ direction; this breaks

the symmetry of the stagnation points. The front stagnation point focuses fluid along the

x axis and ejects fluid in the +ŷ and −ŷ directions. Meanwhile, the opposite is true for
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Figure 6.4. The emergent pattern results from hydrodynamic in-
teractions around a microroller. Fluid streamlines in the micoroller’s
frame produced from a microroller (orange circle) at z = 3hr (a). The fluid
velocity is normalized by the microroller’s translational speed. There are
two characteristic sets of streamlines around the microroller, recirculating
(blue) and bypassing (purple) streamlines. Additionally, we observe the
presence of stagnation points (white x-crosses) in the front and back of the
microroller. In a suspension of passive particles at T = 0K, we extract pas-
sive particles that have residence times τ larger than background particles
τp (b) and plot their trajectories (c). These trajectories are confined to the
recirculating and bypassing regions. Using the average passive particle ve-
locity profile in (d), we determined that particles in the recirculating region
have long residence because they are trapped around the microroller. Mean-
while, particles in the bypassing region persist around the microroller due to
their curved trajectories around the microroller. Finally, using simulation
data of suspensions at T = 293K, we show the passive particle streamlines
around the microroller and overlay them on the simulation ⟨ρpassive (r)⟩t
(top) and experimental emergent pattern (bottom)(e). This shows that the
recirculating and bypassing streamlines span the emergent pattern.
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the stagnation point behind the microroller; fluid is focused through streamlines in the y

axis and expelled in the +x̂ and −x̂ directions.

To understand how a pattern emerges in the passive suspension, we first consider how

a single passive particle interacts with the flow field generated by the microroller. To sim-

plify our analysis, we assume that the passive particle does not perturb the microroller

streamlines even though they are of finite size. We believe this is reasonable considering

the dimensions of the emergent pattern as the distance between the microroller and the

passive particles are a distance away where lubrication is negligible. We begin our analysis

by considering a passive particle which remains in the plane of the xy streamlines (above

the microroller) as seen in Fig. 6.4(a); a single passive particle approaching the microroller

from the right and located around y = 0 will encounter the front stagnation point. Any

slight perturbation will displace the particle in the +ŷ or −ŷ directions and direct the par-

ticle into the bypassing streamlines bounding the recirculating region. The particle would

then be transported to the back stagnation point where once again a slight perturbation

can either push the particle into the recirculating region or eject it in the −x̂ direction.

Sources of perturbations in the experimental system are thermal fluctuations and near

field (lubrication) interactions from other particles. In dense passive particle suspension,

near field interactions are prominent due to the proximity of particles in space. For equal

sized spheres, this occurs when the distance between a pair of particles is equal to or

less than two particle diameters. This interaction is largely associated to the squeezing

of fluid out from between the narrowly separated particles. When two particles are close

enough to each other in the stagnation region, where the fluid flow speed vanishes, near
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field interactions will enable these particles to travel across streamlines away from the

stagnation point and enter either the recirculating or bypassing streamlines.

To explain the emergent pattern observed in experiments, we note that ⟨ρpassive (r)⟩t

is set by the residence time of the passive particles in the vicinity of the microroller.

The emergent pattern arises from the contrast of residence times between the background

passive particles and particles that spend more time near the microroller; passive particles

that comprise the emergent pattern are those that remain in the vicinity of the microroller

for an amount of time τ greater than the background passive particles. We calculate

the background residence time, τp, which is the maximum time for background passive

particles to spend within a square box that envelops the recirculating region of the fluid

flow:

τp =
Lx

⟨vroller⟩ − σvroller

,

where Lx is the box length, and σvroller is the standard deviation of the microroller’s speed

in the x̂ direction. Interestingly, even in a suspension of passive particles at T = 293K

we observe deviations in the height of the microroller due to the near field interactions

with passive particles. These height fluctuations result in fluctuations in the microroller’s

velocity. Here we choose Lx = 20µm as this is larger than the recirculation zone at this

value of the microroller height. We note that the choice of Lx does not matter as long as

the extension of the emergent pattern is contained within the box. This is because the

variability of residence times only occurs in the regions of non-negligible hydrodynamic

interactions near the microroller.

There are two possible mechanisms for passive particles to have residence times greater

than the background time (τ > τp): (i) particles traverse the length Lx slower than the
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microroller, or (ii) particles travel a distance greater than Lx within the square box with

area L2
x. Using the passive particle trajectories from our simulations at ϕpassive = 0.17,

f = 5Hz and, T = 0K we identify the set of passive particles where τ > τp. This set

corresponds to the tail end of the distribution of residence times P (τ) as seen in Fig.

6.4(b), where the mean of P (τ) approximately corresponds to Lx

⟨vroller⟩
. In Fig. 6.4(c) we

plot the set of individual passive particle trajectories with τ ≥ τp colored by their residence

time normalized by τp. Recalling that we are analyzing the particle trajectories in the

microroller’s frame, we observe that the trajectories with τ > τp clearly replicate the

microroller’s streamlines as seen in Fig. 6.4(a). This shows that near field interactions

between passive particles do not qualitatively affect the trajectories expected from the

flow field of the microroller. There are two visible regions with contrasting residence times

which directly correlate to the two sets of streamlines from Fig. 6.4(a), the recirculating

and bypassing streamlines. Residence times within the recirculating region are on average

2.5 times greater than those that bypass it. This is further evidenced by Fig. 6.4(d)

where we have calculated the average spatial velocity profile of the passive particles and

observe that passive particles travel at the background speed and sometimes faster than

the microroller. There is an additional set of particles with τ > τp; these are the particles

whose trajectories correspond to the bypass region near the recirculation zone. As these

curved trajectories are longer than the straight trajectories of the background particles,

τ > τp even though these particles move at the same velocity as the background particles.

These results suggest that these two regions are responsible for the emergent pattern in

experiments. To test this hypothesis, we perform simulations at finite temperature to

more accurately replicate experimental conditions.
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In order to produce simulation results that can be quantitatively compared to exper-

iments, we carry out simulations at T = 293 K (see Fig. 6.1). From these simulations we

calculate a pattern length of 8 µm, similar to the experimental length (8.4± 0.9µm) and

identical to the pattern length of suspensions at T = 0K. This agreement is expected as

thermal fluctuations are negligible in our system. To demonstrate the agreement between

the experimental results and the Stokesian dynamics simulations we directly compare the

pattern found in experiments with that found in the simulations; the top half of Fig.

6.4(e) is the passive particle distribution from the simulations, while the lower half is that

obtained from experiments. We observe that the passive particle streamlines associated

to the recirculating and bypassing region in Fig. 6.4(e) overlap with the emergent pat-

tern. Moreover, these streamlines also reflect thermal fluctuations in the positions of the

passive particles. Therefore, we have shown the emergent pattern from suspensions at

finite temperature are well described by advective flows generated by the microroller.

In summary, we have established that the emergent pattern reveals regions of non-

negligible hydrodynamic interactions. We have characterized this by demonstrating pas-

sive particle residence times around the microroller are extended due to the recirculating

and bypassing streamlines produced by a microroller. Thus far it has been sufficient to

only use information from the xy plane to explain the experimental results. This is due

to the fact that the patterns obtained from the experiments are calculated from particle

locations projected on the xy plane within the depth of field of the microscope. Exper-

imentally, we lose information away from the focal plane, but particle fluctuations from

their average height seem to be negligible. Thus, it is sufficient to only use information
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from the xy flow plane to trace passive particle trajectories and explain the origin of the

emergent pattern.

We now consider how the passive particle height, hpassive, influences the emergent

pattern. By modulating the passive particle height, we will sample a different region

of the microroller flow field, and, consequently, the emergent pattern will change. To

illustrate this, we need to analyze the flow field in three dimensions, and understand how

the recirculating and bypassing regions change as a function of passive particle height.

Additionally, we need to consider how xz streamlines (Fig. 6.5 left panel) can lift particles

above their average height. This will lead passive particles to interact with different sets

of streamlines in the xy plane and lead to emergent patterns with different spatial features

(Fig. 6.5 right panel).

Previously, we identified the existence of two stagnation points at the front and back

of the microroller in the xy plane, see Fig. 6.4(a). The region bounded between both

stagnation points is the recirculating region of the microroller streamlines in the xy plane

and gives rise to the emergent pattern. To understand how the emergent pattern changes

with respect to the z axis, it is sufficient to track the front stagnation point as a function

of the height from the floor. In Fig. 6.5, we show the microroller’s xz streamlines at

y = 0 in the microroller’s frame. We superimpose the calculated xy velocity component

stagnation line (dashed white line) which correlates to the extension of the recirculating

region on the xy plane. Note that the streamlines intersect the stagnation line, meaning

the z component velocity is not zero. This curve is not a true stagnation line as not not

all velocity components are zero, therefore, it is a saddle line.
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Figure 6.5. The microroller’s hydrodynamic interactions extend in
three dimensions and can be probed by passive particles at differ-
ent heights. In the left panel, we plot the xz microroller streamlines at
the (x, 0, z) plane for a microroller height hroller = 1.34µm, and show that
not all streamlines (grey curves) intersect the xy stagnation line or saddle
line (dashed white curve). Additionally, the saddle line determines the x
axis extension of the xy fluid recirculating streamlines at a given height
(middle panel). Therefore, different average passive particle heights in sus-
pensions will probe these different recirculating and bypassive streamlines
and create different emergent patterns (right panel). We study suspensions
with three different particle heights 1.01µm, 1.4µm, and 2.6µm which we
color code green, yellow and cyan, respectively. In the xz streamlines we
bound regions that correspond the the average height of the passive parti-
cles and by the xz streamline far from the microroller at the average height
of the passive particle. In the middle panel we plot the three different xy
streamlines whose spatial extensions are mirrored in suspensions’ emergent
pattern. We find that the depletion region is present only in the suspensions
with particle heights whose bound region near the saddle line is closed.
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The saddle line’s x axis extension varies as a function of z. This indicates that the

spatial extension of the emergent pattern changes by tuning the height of the passive

particles. This is because passive particles will sample different sections of the saddle

line. We note that the saddle line is uniquely determined by hroller. Here we continue to

solely focus on passive particle suspensions in water with hroller = 1.34µm.

In order to demonstrate the degree of tuning of the emergent pattern’s extent with

respect to the height of the passive particles, we perform sets of simulations at T = 0K

with different average passive particle heights ⟨hpassive⟩ at constant ⟨hroller⟩. In athermal

suspensions, only hydrodynamic forces and the interplay between gravitational and charge

repulsion from the floor will change particles’ height. We tune ⟨hpassive⟩ by varying their

excess mass mpassive with respect to water, and focus on three different ⟨hpassive⟩. In

suspensions without the presence of a microroller, passive particles have an average height

of 1.01µm, 1.4µm, and 2.6µm for passive particle excess masses of 10mpassive, mpassive,

and with 1/100mpassive, respectively.

As we have previously stated, suspensions with different hpassive will form distinct

emergent patterns given the curvature of the saddle line. However, we must consider how

the xz streamlines in Fig. 6.5 will impact where passive particles intersect the saddle

line. Near the saddle line, xz streamlines can lift particles above their ⟨hpassive⟩ and lead

to intersect at z > hpassive. In Fig. 6.5 left panel, we color regions green, yellow, and

cyan, to indicate the range of heights where passive particles will most likely intersect the

saddle line for ⟨hpassive⟩ = {1.01, 1.4, 2.6}µm, respectively. The lower bound of the colored

regions is defined by the particle’s ⟨hpassive⟩, and the upper bound corresponds to the xz

streamline far from the microroller at the respective ⟨hpassive⟩. At a distance far from
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the microroller, ∼ 30µm, the microroller’s hydrodynamic interactions have sufficiently

decayed such that the xz streamlines are parallel to one another. This simply represents

the background flow which in this reference frame corresponds to the microroller’s velocity.

In general, all xz streamlines curve upwards as approaching the saddle line. This

leads to multiple xz streamlines overlapping the different colored regions that passive

particles will most likely intersect the saddle line for a given average height. Out of

simplicity, we select to intersect the saddle line at the lower bound of this region, the

average passive particle height, and plot the xy streamlines around the microroller at

this height, see Fig. 6.5 middle panel (where we show and color the borders of the xy

streamlines green, yellow, and cyan to indicate average passive particle heights ⟨hpassive⟩ =

{1.01, 1.4, 2.6}µm, respectively). As expected, the spatial extension of the recirculating

streamlines at different z levels follow the saddle line x values for a given height. In

order to show that the emergent patterns obtained from athermal suspensions at different

passive particle heights mirror their respective xz streamlines, we plot their ⟨ρpassive (r)⟩t

obtained from simulations at T = 0K , see Fig. 6.5 right panel. For all cases, emergent

patterns mirror the Lpattern of their bypassing streamlines in the xy plane. However, we

find a wide variety in the geometry of the emergent pattern. Only suspensions of passive

particles with ⟨hpassive⟩ = {1.01, 1.4}µm have a depletion region behind the microroller.

Meanwhile, suspensions composed of passive particles with ⟨hpassive⟩ = 2.6µm produce an

emergent pattern without a depletion region. This difference is produced by the nature of

the xz streamlines and their ability to lift particles above their average height. Suspensions

that produce emergent patterns with an inverted c-shape structure correspond to passive

particle heights in which the majority of the particles will intersect with the saddle line.
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This can be observed in the colored bounded regions in Fig. 6.5 left panel, where all xz

streamlines in the green and yellow regions are also fully bounded by the saddle line. It

is the cyan region which corresponds to passive particles with ⟨hpassive⟩ = 2.6µm that

contains xz streamlines that miss the saddle line. Thus, not all passive particles intersect

with the saddle line and avoid interacting with the recirculating and bypassing streamlines.

By not entering the recirculating region, the xz streamlines will transport passive particles

above and around the microroller and occupy the region where the depletion region is seen

at lower ⟨hpassive⟩.

Moreover, we briefly explore the origin of the depletion region of the emergent pat-

tern by performing two sets of simulations at T = 0K. Each set of simulations isolates

different interactions between particles. In one case, we remove the hydrodynamic near-

field interaction, and the steric interaction that prevents particles from overlapping. In

the second set, we leave all near-field interactions intact but simulate mass-less passive

particles. We initialize their height at z = 1.34µm. Interestingly, the depletion region

is still present when near-field interactions are neglected but disappears in suspensions

of mass-less passive particles, see Figure S3. This indicates the importance of sedimen-

tation when particles are lifted above their equilibrium height. It has previously been

reported[239] that the strength of gravity plays an important role in the dynamics of

microroller systems.

Although this is out of the scope of this paper, we believe that the size of the passive

particles should also play a role in the formation of the depletion region. Given that all

particles in the suspension are of finite size, they simultaneously sample multiple sets of

streamlines and experience shearing. Therefore, a competition between particle size and



186

the local gradients of the streamlines ensues where particles with sizes smaller than the

local gradient will mostly be advected while larger particles will be more greatly sheared

which will affect their dynamics.

Overall, no matter ⟨hpassive⟩, all emergent patterns mirror the extension of the recir-

culating and bypassing regions in the xy plane at their respective height. We should thus

expect that for ⟨hpassive⟩ above the saddle line no emergent pattern will appear as there

would be no region of non-negligible hydrodynamic interactions for the passive particles

to sample. Importantly, we have shown that the emergent pattern can be controlled by

modifying the height of the passive particles. As we move up from the floor, both re-

circulating and bypassing regions should increase until they begin to decay as we probe

heights further away from the microroller.

As the saddle line correlates well with the extension of the emergent pattern, we

propose Lpattern to be the distance between the microroller and the saddle line Lsaddle. As

previously quantified in Fig. 6.2(f), Lpattern does not change when varying the suspension’s

passive particle area fraction nor the microroller’s velocity, it only changes with the height

of the microroller, as does the saddle line. However, to compare Lsaddle and Lpattern, one

ambiguity persists, at which height to calculate Lsaddle? By analyzing the xz streamlines

we have identified a set of bounds for a given ⟨hpassive⟩ that delimits the heights passive

particles will be driven to by the microroller’s xz streamlines. Using these bounds, and

knowing both ⟨hroller⟩ and ⟨hpassive⟩, we can provide an interval for Lsaddle to compare with

Lpattern obtained from simulations and experiments to show that these two quantities are

equivalent.
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We perform simulations with a microroller at different ⟨hroller⟩ and calculate Lpattern.

Furthermore, we compare and parameterize Lpattern by Lsaddle (z; ⟨hroller⟩)), where z is

the height above the floor. As previously discussed, the pattern length has a strong

dependency on passive particle height for a given microroller height due to the curvature of

the saddle line. Therefore, in simulations at T = 0K we keep the ratio between the passive

particle and microroller height approximately constant, ⟨hpassive⟩ / ⟨hroller⟩ ≈ 1.2, to only

focus on the effects of hroller on the emergent pattern. Meanwhile, the average height of the

passive particles in finite temperature suspensions is ⟨hpassive⟩ = 2.5µm. In Fig. 6.6, we

plot Lpattern and the Lsaddle region, and show that the Lsaddle region is a good descriptor for

the emergent pattern obtained from suspensions at T = 0K, and T = 293K. Additionally,

the extension of the pattern length and Lsaddle decreases as the microroller approaches the

no-slip boundary. This is expected, as moving closer to the surface effectively screens the

hydrodynamic interactions, reducing their extent. The opposite is true for a microroller

further away from the surface. However, as the microroller’s height is increased the

coupling between the microroller’s rotation and translation diminishes until the translation

velocity becomes infinitesimally small. In a suspension at finite temperature, thermal

fluctuations would then disrupt the pattern created by advective flows.

6.4. Conclusion

In conclusion, we have demonstrated the ability to use a driven particle to create

a large-scale (10 times the particle radius), asymmetrical 3D pattern from a quasi-2D

colloidal suspension. The pattern includes an accumulation region with its center being
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Figure 6.6. Tuning the pattern length by changing the microroller
height. We show that the pattern length Lpattern directly correlates to the
distance between the microroller and its front saddle line Lsaddle (z; ⟨hroller⟩))
(blue region). As previously stated, the saddle line is a function of height,
and multiple streamlines in the xz plane intersect a given height which
complicates which height to choose to calculate Lsaddle. However, we bound
the (blue) Lsaddle region by using the bounds determined and shown in Fig.
6.5.

several particle sizes away from the microroller, and a depletion region along the micro-

roller trajectory. This pattern is created via hydrodynamic interactions, and is unmodified

by thermal fluctuations, passive particle area fraction, or driving velocity. We show two

main pathways to modify the pattern by altering the hydrodynamic interactions between

the microroller and the passive particles. This can be done by tuning the height of the

passive particles in the suspension with respect to the microroller, or by modifying the
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height of the microroller with respect to the floor. Our analysis of the microroller-driven

advective flow that generates the pattern demonstrates that the extension of the emer-

gent pattern is equivalent to the distance between the microroller and the flow’s saddle

line. Thus, modifying the average height of the microroller changes the pattern’s size as

it changes the features of its fluid velocity profile. Additionally, by modifying the pas-

sive particle height in a suspension at constant microroller height, the particles are able

to sample other planes of non-negligible hydrodynamic regions and change the exten-

sion of the pattern, which demonstrates the three dimensional nature of the microroller’s

streamlines.

Our analysis reveals that the pattern scale is determined by equilibrium quantities: the

microroller height and the height distribution of the passive particles. Thus, the size scale

of the emergent pattern provides an alternative pathway to determine an approximate

average passive particle height in a suspension if the hroller is known. This analysis is

straightforward, is not computationally demanding, and offers a new tool for studying

fluid-mediated interactions of driven particles. If there are weak or transient interaction

between the passive particles (for example in a colloidal gel), this pattern formation

could be exploited for material restructuring. This system also offers an alternative way

to do active microrheology [240]. For example, we observe that a microroller moves

slower when it is in a colloidal suspension than when it is in a pure fluid. One can

thus calculate the effective viscosity of the colloidal suspension by measuring the change

of the microroller speed as a function of colloidal volume fraction, and measure density

fluctuations by measuring roller velocity fluctuations. Additionally, similar principles of

microroller streamlines can perhaps be used to explain how a mixture of passive particles
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and biologically active swimmers lead to anomalous transport coefficients of the passive

particles via hydrodynamic interactions [221, 222]. Finally, we note that when the passive

particles enter the recirculating steamlines, they are trapped and move together with the

microrollers. Therefore, microrollers that generate these streamlines, or microvortices,

have the potential to transport micron-size particles.

Materials and Methods

Experiments

The passive particles are spherical and made of polystyrene (Bangs laboratory©, FSPP005)

with a density of 1.06 g/cm3 and a mean diameter of = 2.07± 0.15µm. The microrollers

in the experiment are described in detail in [241] and [242]. The microroller has a mean

diameter of 2.1±0.1µm and a permanent magnetic dipole as it is comprised of a hematite

cube within a spherical polymer matrix, see Fig. 6.1(b). The mean density of the micro-

roller is 1.74 g/cm3. We clean the passive particles by replacing the solution with DI

water for three times. Then we add a small amount of microroller solution to the passive

particle solution, and mix the solution with a vortex followed by a sonicator. We withdraw

the mixture solution with a capillary tube, and seal the tube entrance with glue. Then,

we mount the sample on a microscope, and check the area fraction of passive particles

after all particles sediment to the floor. Finally, we apply rotating magnetic fields and

record the particle distribution with the fluorescent microscope. The microrollers and the

passive particles have different fluorescent wavelength, giving us the ability to separate

the two types of particles in two channels.
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The system and the mechanism to drive a microroller is described in detail in [241].

In short, we use two pairs of Helmholtz coils to generate an external rotating magnetic

field (100 G). The permanent dipole of a driven particle experiences the torque from the

external field, causing the driven particle to rotate synchronously with the field. As the

microroller is near the floor, the flow generated by the rotating driven particle becomes

asymmetrical due to the non-slip boundary of the floor, which causes the microroller

to translate. We trace the location of the microrollers using Python and the package

Trackpy, which we use to generate a sequence of images around the microroller. We then

use the position of the microroller to shift the coordinates of all images to the microroller

frame.

Simulations

As we have shown, the predominant interaction between a microroller and passive parti-

cles in suspension are hydrodynamic in nature. To correctly quantify these interactions

we simulate these systems using lubricated corrected Brownian dynamics [241]. In this

method the position and orientation of a particle q1 = {x, θ} are evolved by

(6.1)
dQ

dt
= MF+ kBT∂Q ·M+

√
2kBTMW(t)

where Q = [q1,q2, . . . ,qn] is the vector containing the the individual positions and ori-

entations of all particles. Here, pairwise hydrodynamic interactions between particles are

determined by their configuration in space and contained in the lubrication corrected mo-

bility matrix M (Q). The magnitude of these interactions are weighted by deterministic

properties governed by external forces f and torques τ acting on particles in solution, and

https://soft-matter.github.io/trackpy/v0.6.1/
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stochastic properties arising from the presence of thermal fluctuations. The first term

with respect to the right of Eq. 6.1 details its deterministic character, here M is weighted

by the vector comprised of individual external forces and torques on impinging on all

particles F = [f1, τ1, . . . , fn, τ2, ]. The second and third terms of the equation deal with

the thermal drift, and random walk nature of the of the thermal fluctuations, respectively.

Here, kB denotes the Boltzmann constant, T indicates the solvent temperature, and W(t)

represents a Wiener process or a collection of independent white noise processes essen-

tial for the generation of Brownian velocities. Given that this is a stochastic differential

equation, we temporally integrate this equation using a stochastic scheme, specifically

the ‘Stochastic Trapezoidal Split’ (STS) scheme [241]. In this paper we perform simu-

lations of Eq. 6.1 evolved by the STS scheme using a publicly accessible code found on

github at RigidMultiblobsWall. More details including the accuracy of this scheme, and

pre-conditioners employed in the solution for M
1/2 can be found in [241].

To simulate suspensions of passive particles with a microroller, we model passive par-

ticles and the microroller as spherical rigid particles with radii Rpassive = 1.0µm , and

Rroller = 1.0µm, respectively. The particles are immersed in water at T = 293.15K, and

they have a buoyant mass of mpassive = 2.5 × 10−16 kg, and mroller = 3.1 × 10−15 kg,

respectively. We perform three dimensional simulations with an initial condition set by

fixing the area fraction of passive particles and randomly populating passive particles in

a two dimensional strip of 250µm in length and 75µm width at z = 1.5µm. Finally, we

place a non-rotating microroller to the left of the strip, and equilibrate particle positions

by evolving the system for approximately 60 s, after which we rotate the microroller at

https://github.com/stochasticHydroTools/RigidMultiblobsWall
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constant angular velocity using the algorithm detailed in [241]. For all instances of the

simulations we use a time step of ∆t = 0.05 s.

In this paper, all particles experience gravitational forces given their excess mass, and

electrostatic repulsion with the lower surface. We model the electrostatic repulsion using

the Yukawa type potential:

(6.2) U(h) =


ϵ exp

(
R−h
κ

)
if h > R

ϵ
(
1− R−h

κ

)
if h < R

,

where h is the particle center to floor distance, and R is the radius of the respective parti-

cle. For the microroller, we set the magnitude of the potential ϵ, and its screening factor κ

that simultaneously matches the height that replicates its experimentally obtained veloc-

ity profile (hroller = 1.34µm), and its measured diffusion coefficient, Droller = 0.15µm2/s.

For the passive particles, we assume the same κ as the microroller, and instead fit ϵ to

match its experimentally obtained diffusion coefficient, Droller = 0.015µm2/s. The list of

parameters used in the simulations can be found tabulated in the SI. Additionally, as the

suspension is located above a no-slip wall, hydrodynamic interactions are calculated using

Blake’s solution of the Green’s function solution to the Stokes equation above a no-slip

wall generalized for spherical rigid particles [243, 244]. However, this Green’s function

only correctly describes far field hydrodynamic interactions between all pairs of surfaces,

particle-particle and particle-wall. To include near field hydrodynamic interactions related

to the squeezing of fluid between pairs of surfaces we use the previously mentioned lubrica-

tion corrected mobility matrix M detailed in [241]. Moreover, we use two different cutoffs
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that determines at which distance between surfaces at which to calculate either near field

hydrodynamic interactions or far field hydrodynamic interactions. For particle-particle

interactions the cutoff distance is r ≤ 5µm where for distances greater than 5µm we

simply calculate interactions with the Green’s function solution. Meanwhile, we calculate

near field hydrodynamic interactions for particle-wall interactions for any distance above

the wall. For more information about the implementation of the resistance scalars for near

field interactions can be found in [241]. We additionally complement near field hydrody-

namic interactions with a short-ranged steric repulsion potential Ucut (r) with the Yukawa

type potential of Eq. 6.2 for particle-particle and particle-wall interactions. In the case

for particle-particle interactions we substitute R = 2R (1 − δcut), while R = R (1 − δcut)

for particle-wall interactions, where δcut = 10−3 µm. The complete set of parameters used

in Ucut (r) are also tabulated in the SI.

Additionally, we calculate ⟨ρpassive⟩t averaging over at least 10 different simulation runs

using a 30 µm × 30µm mesh with bin width ∆L = 0.25µm. We choose to average over

frames 0.1 s apart and where the microroller is Lx ∈ [20, 230]µm. Under these bounds the

microroller is within the region of passive particles with a given area fraction ϕ. We also use

this implementation to avoid averaging over regions outside the bounds of the suspension

which affects the formation and dimensional features of the emergent pattern. After

calculating ⟨ρpassive⟩t we use Gaussian smoothing with a variance the size of the passive

particle radius to include particle areal size effects. This allows comparison between

⟨ρpassive⟩t and experimental emergent patterns now that ⟨ρpassive⟩t contains information

of the passive particle size and loosens the constraints on the distributions obtained by

using a homogeneous binning mesh of 0.25, µm. We calculate all velocity distributions of
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a microroller also using the Blake’s solution to the Green’s function of a stokeslet above

a no-slip wall generalized for a spherical particle [244].

6.5. Supporting Information

Supporting information contains: the pair distribution functions over the studied tem-

perature range; details of the determination of Tdeloc; the calculation method for occupied

volume and the heat capacity; and an analysis of nearest neighbor interactions (PDF).

Videos of rotating unit cells of a localized and delocalized sublattice for both unconstrained

and fixed lattice simulations are also available (.mp4 videos).
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CHAPTER 7

Conclusions and Outlook

The impact that colloidal matter, and in general soft matter, has had on materials

science has been vast. Colloidal matter has been found to be a model system for hard

condensed matter systems to the extent that nucleation [7] and dislocation dynamics [6,

27] in colloidal systems has been used to gain a better understanding of their atomic

counterparts. The latter was done by showing that dynamical behaviors in both systems,

colloidal and atomic, are described by the same mathematical equations and thus follow

identical dynamical scalings. This sense of universality between phenomena found in either

type of matter, colloidal or atomic, I find fascinating as this can open other horizons by

questioning what other functionalities can colloidal matter be imbued with such that it

may also serve as a model for other systems. The body of work in this thesis strived

to explore and further expand functionalities associated to colloidal matter such as an

analogous form for the insulator-to-metal transition and their potential for training in

materials.

In chapter 2, we found how tuning the shape anisotropy of particles grafted with com-

plimentary DNA chains affects the phase space of DNA self-assembled colloidal crystals.

Unlike atoms in atomic matter, particles of colloidal suspensions can be synthesized to

take many different shapes. The only sense of similarity to different particle shapes in

atomic crystals is the different possible hybridization electronic states molecules can take

dictated by their valance electrons. In either case, different particle shapes or different
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molecule hybridization types enables an entire onslaught of different crystal structures.

The applications for colloidal crystal lattices have been difficult to find considering how

soft and fragile they are [245], but they have been found uses as photonic materials as

certain lattices contain photonic band gaps useful for light sensing [159]. To enhance the

applicability of these colloidal crystals one must further enhance their internal degrees of

freedom. One path is to introduce a greater degree of symmetry breaking within the com-

ponents of the colloidal crystal. This was the objective of the work presented in chapters

3 and 4, work which was also greatly motivated by the findings of [20]. By simply break-

ing the symmetry of the interacting components of the self-assembling crystal, we found

that lattice vibrations controlled behavior akin to a insulator-to-metal type transition.

The larger species are located at the lattice points of all self-assembled crystals, whereas

the smaller species locate at their symmetric interstitial sites. When the larger particles

begin to vibrate due to thermal fluctuations, this affects the potential energy landscape

of the smaller particles and enables them to delocalize and diffuse throughout the crystal.

In some cases, the enhanced small particle diffusion leads to a crystal lattice transition.

Thus, this system shows a insulator-to-metal like behavior, which seems heavily tied the

lattice vibrations. These size-asymmetric colloidal crystals can be further analyzed by

exposing them to externally produced shockwaves with the idea of adding a new knob for

controlling their crystal lattice type. Additionally, another pathway for enhancing these

systems is the addition of some charge to the smaller particles for charge transport. Such

systems could then be used as model systems for superionic materials [102].

Meanwhile, chapters 5 and 6 consisted of systems with dynamical internal degrees of

freedom necessary for training in materials. Only through the repeated reconfiguration of a
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Figure 7.1. Training magnetoelastic sheets. Diagram of training protocol to
train curvature into an initially flat sheet (a). Deflection of an experimental
sheet during the training protocol (b). The analogous training cruves for a
simulated sheet (c). In both cases the upper curve shows the deflection of
the free corner when the field is on, while the lower curve is the equilibrium
deflection when the field has been turned off. Experimental training data
is courtesy of Edward P. Esposito.

subset of a material’s internal degrees of freedom have materials been shown to be trainable

[28, 246]. We showed in chapter 5 how an elastic sheet of magnetic particles can bend out

of plane in the direction of the external magentic field due to arising magnetic dipole forces

among all the particles. The origin of the sheet’s elastic response is the van der Waals

interactions arising from the confined grafted oleic acid chains on the particles surfaces.

Simulations of these sheets assume that the equilibrium configuration of the sheet is a

perfectly flat state. The actuation of these sheets is driven by the magnetic forces which

are balanced with the sheet’s elastic properties, which oppose out-of-plane configurations.

However, sheet reconfigurability only fulfills half of the requirements for the sheet to be

trainable. The sheets must elastically reconfigure towards a new equilibrium state during
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being actuated. Preliminary experimental data has shown that under the presence of

both a magnetic field and a laser, the sheet will retain some curvature proportional to

its deflection after both the laser source and magnetic field are turned off. From the

latter we construct our training protocol which consists of two steps: first, actuate the

sheet until it has equilibrated and then scan the sheet with a laser, and second, turn the

field off. We repeat this until the amount of deflection in the sheet saturates, see Figure

7.1(a). Figure 7.1(b) shows experimentally this is possible, where the upper curve is the

maximally deflected state (the external field and laser are on), and the lower curve is the

new equilibrium configuration of the sheet (the external field and laser are off). We believe

that the mechanism for training of the sheets must consist of some reconfiguration of the

grafted chains only when the sheet is being simultaneously bent and heated. We test this

hypothesize using simulations where we locally update all the ith reference angles θi,0 (see

equation 1.1) between adjacent triangular facets. We choose the amount of curvature to

be added to be proportional to the angle between the adjacent facets when the field is

applied. In Figure 7.1(c) we see that our simulation results qualitatively reproduces the

training seen in experiments. However, there is still much more to do. First, we must

confirm that our simulation results are quantitatively similar to experiments. Second,

once we have confirmed our simulation model, it would be of great interest to correlate

training and its associated elastic energy. In this way we may extract information about

the degree of chain reconfiguration after every training step and calculate parameters

associated to the efficiency of learning in these sheets.

In chapter 6, we were similarly motivated to take advantage of the relaxation effects on

motile particles due to an enveloping medium. But instead of using an elastic medium, we
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Figure 7.2. Theorized trainable system of a suspension of passive particles
with a single driven particle. The red lines indicate pairwise interactions
between particles which can be reconfigured due to the translation of the
driven particle. Diagram courtesy of Shih-Yuan Chen.

use a hydrodynamic one through which particles can easily flow. Additionally, we wished

to understand the reach of hydrodynamic forces of a single rolling and translating particle

in a suspension of passive particles at finite temperature. All particles in this system

are close to a horizontal and solid surface, thus a rolling particle will also translate given

its proximity to the surface [243]. In general, by driving the rotation of a single particle

we showed that the range of non-negligible hydrodynamic interactions emanating from

this single rotating-translating particle is 10 times its radius. We found this range to be
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Idependent of external physical parameters such as passive particle concentration and the

particle’s rotation velocity. We identified this by analyzing an emergent pattern created by

passive particles. However, once we stopped driving the rotation of the rolling-translating

particle, the emergent pattern would disapear due to thermal fluctuations. Thus, we

would need to enhance this system for it to be trainable. One idea is to induce attractive

interactions among all particles, see Figure 7.2, such that they would be strong enough to

oppose particle motion due to thermal fluctuations, but weak enough for particles to still

be mobile due to hydrodynamic interactions. Interesting features of such a system would

be how the number of interacting particles affects the suspension’s viscosity as this would

be tunable by the translating driven particle. A similar analysis on different acoustically

trained suspensions has been shown to impact the strain rate for the onset of shear jammed

states [246]. The latter was modulated by different training protocols where frequency

amplitudes of the acoustic source was varied. Though it is difficult to tune the magnitude

of the interactions in our theorized system, we can modify the range of the hydrodynamic

forces. In chapter 6 we found that there are two ways of doing this: modifying the height

of the rolling-translating particle or altering the height of the passive particles. But these

two parameters are two faces of the same coin, they simply reveal the inhomogenous

nature of the hydrodynamic flow around a rolling-translating particle. In Figure 7.3(a),

we observe two distinguishable sets of streamlines, those that encapsulate a vortex, and

others that avoid this encapsulating region. The interface of these two sets defines the

range of the non-negligible hydrodynamic interactions between the driven particle and

passive particles. Additionally, the appearance of a microvortex indicates the abiity of

this microroller to transport passive particles like cargo [247, 248]. This is striking because
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Figure 7.3. Transporting passive particles. (a) Streamlines generated by a
rotating particle above a plane. (b) Initial configuration of a driven rotat-
ing particle (red) and a passive particle (white), and the passive particle’s
pathline (golden curve). (c) Phase plot of passive particle pathlines for all
initial configurations of the passive particle.

spheres were once thought not to have this functionality [chamolly2020irreversible].

Inspired by our previous work that dealt with particle size asymmetry (chapters 3 and 4)

we have preliminary results that suggest a smaller rolling-translating particle can carry a

passive particle up to three times its size. In Figure 7.3(b) we show the initial configuration

of a microroller and passive particle at rest (before we start driving its rotation) with the

pathline of the passive particle in the reference frame of the rotating-translating particle

when it is driven to rotate. However, this is but one of many initial configurations, Figure

7.3(c) shows the pathlines of the passive particle in the reference frame of the roller for

any initial configuration. This opens up other questions concerning the parameters that

control a microroller’s capacity to carry particles larger than itself which we are continuing

to explore.

In conclusion, the work presented in this thesis was highly motivated by the capacity

to add complexity to a set of synthetic particles to create emergent structures with, in

the eyes of this author, extraordinary emergent behavior. By simply adding attractive

tethers to suspended particles we have enabled them to come together and form structures

with excellent symmetry, all dictated by the laws of thermodynamics. But, if we wish to
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free ourselves from the limitations of phenomena at thermal equilibrium set by ergodic

principles, we do so by further enhancing the properties of the participating particles. By

further functionalization or increase of complexity, we may go exploring into the realm

that life is also a part of: non-equilibrium systems. In chemistry, there is saying: l̈ike

dissolves like,̈refering to the fact that solutions of one type of polarity usually only dissolve

compounds of similar polaraity. Analogously, in physics, you can only probe phenomena

of energy scales related to the energy scale of your perturbation. Thus, here, by adding

more degrees of freedom to individual units, their collective structure will exhibit more

complex behavior. So how far then are we from creating model systems for life comprised

of entirely synthetic particles? We have already seen in this thesis that a concept usually

associated to living systems has found a use in inanimate systems. The materials that are

being trained are not living, not even close. But are there complex systems caught in the

meso-scale of complexity between totally inanimate and animate behavior? No matter

the case, the increasing use of synthetic systems to study life-like behavior can only mean

it’s only a matter of time before we understand what it means to be living from a physical

perspective.
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APPENDIX A

Supplementary information for Chapter 3

This appendix contains the supplementary information associated with Chapter 3.

The following was originally published in the Journal of Physical Chemistry C in 2021.

It is reproduced here with permission of AUTHORS, and the PUBLISHER.



222

Delocalization Transition in Colloidal Crystals: Supplementary Information

Hector Lopez-Rios,* Ali Ehlen,* Monica Olvera de la Cruz

* equally contributing first authors

Reprinted with permission from:

Journal of Physical Chemistry C 2021, 125, 1, 1096-1106, DOI:

10.1021/acs.jpcc.0c09730. Copyright 2021 American Chemical Society.

http: // pubs. acs. org/ articlesonrequest/ AOR-8UNXPU6QS5KATYESGAJA

A.0.1. BCC Crystal Stability

# chains Tmin Tdeloc Tmax Tmelt

4 0.7 0.7 1.25 1.28

6 0.7 1.2 1.6 1.65

8 0.75 1.5 1.81 1.82

10 0.61 1.75 1.85 1.9

Table A.1. The (reduced) temperatures of the onset of delocalization
(Tdeloc) and the melting temperature of the crystal (Tmelt). Tdeloc is a quali-
tative meausure and roughly corresponds to when the diffusion constant of
the small particles is significantly greater than zero. Tmin and Tmax are the
lowest and highest simulation temperatures that produced BCC lattices.
Tmelt is the lowest temperature at which the system is melted.

http://pubs.acs.org/articlesonrequest/AOR-8UNXPU6QS5KATYESGAJA 
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The thermodynamic stability of the BCC lattice is supported by several trial simulations

in which we initialized the 6:1 system with the large particles in different lattice con-

figurations (BCC, FCC, SC, BCT). In those simulations, almost all systems within this

temperature range converged to a BCC lattice in equilibrium; this is possible because the

simulation box was able to change size and shape during our NPT simulations (see Section

Parameters and simulation scheme). The range of temperatures used in our simulations

for each number of chains per small particle is listed in Table A.1 in columns Tmin and

Tmax. Above the temperature range we report, the simulations show a melted lattice,

starting at Tmelt. Below that temperature range, we see the large particles form other

lattices, most of which are SC; this regime requires further study. The values of Tmax also

demonstrate that crystals are stronger when the small particles have more grafted chains:

more chains on the small particles leads to higher melting temperatures. Additionally,

in Figure A.1 we show the pair distribution functions, g(r), for all simulations. We ob-

serve an ordinary coarsening of BCC peaks as the temperature is increased, without any

hallmark for the onset of delocalization.

A.0.2. Determining Tdeloc

We estimated Tdeloc for each system as the temperature at which its diffusion increases over

a threadshold (0.1). Qualitatively, this represents when noticeable diffusion begins. The

diffusion coefficient, D, of interstitials can be related to the free energy barrier between

interstitial sites as follows [249]:
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Figure A.1. The pair distribution functions, g(r), for all interaction
strengths over their respective temperature range, from Tmin to Tmax. The
pair distribution curves at different temperatures have been color coded.
Blue corresponds to Tmin, red corresponds to Tmax, and all other intermedi-
ate temperatures are grey. The coarsening of the BCC peaks is observable
over increasing temperature, which is expected.

(A.1) D ∝ e−∆G/kBT

Using this relation, we can fit an exponential curve to the diffusion coefficients in Figure

4B and find the Gibbs activation free energy, ∆G. The resulting fitting parameters, ∆G,

are shown in Figure A.2. We can see that the free energy barrier to diffusion increases

linearly with the number of chains on the small particles, with a slope of roughly 6.4

kJ/mol·linker. This energy is approximately the enthalpy associated with one interactive
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Figure A.2. The fitting parameter ∆G in Equation (A.1). This increases
linearly with the number of chains per small particle.

bead localizing in its most energetically favorable volume (darkest red regions in the 004

plane in Figure 2B). This might mean that the contribution of each additional chain is

generally enthalpic.

The smooth transition of the diffusing small particles is reminiscent of that of the glass

transition curves of enthalpy and volume [250, 251] around the material’s glass transition

temperature, Tg. Because of the smoothness of the transition, Tg has many definitions.

One is the temperature at which the viscosity of the material surpasses a particular value

(1012 Pa · s). In a similar manner, we defined Tdeloc as the temperature at which the

diffusion coefficient passes a small but specific threshold.
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Figure A.3. Lattice density (1/a3) for different cases, as a function of tem-
perature.

This version of Tdeloc has consistently shown to correlate well with the onset of non-

linear behavior of physical and thermodynamical properties as seen in Figure 4 and Fig-

ure A.3.

A.0.3. Calculation of occupied volume

The parameter ϕoccupied was inspired by an attribute of delocalization given by the spatial

extent of π electrons in aromatic compounds. In these molecules, atomic orbitals conjoin

to form hybrid orbitals that span over a carbon based ring backbone. We calculated

the volume occupied by the top 70% of small particles’ probability in the entire crystal

for every simulation, as a fraction of the volume available to the small particles. To do

so, we used voxels with side length equal to the diameter of the small particle centers

and calculated the small particle centers’ probability density distribution (normalized
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visitation frequency) for each voxel over all production simulation frames. Then, we

ordered the voxels by that probability and summed the probability associated with the

first (highest probability) voxels until we reached 0.7. Then, we totaled the volume of

all those voxels. Finally, we divided the resulting volume by the available volume, which

is the total simulation box volume minus the total volume of the large particles. The

resulting fraction is ϕoccupied.

To determine the stability of this metric, we calculated ϕoccupied using different voxel

sizes and cutoff values. Occupied volume values using voxel sizes smaller than the diameter

of the small particle did not converge with number of frames while the others did. It is

understandable for smaller voxels to converge slower than larger ones given that sampling

is greatly reduced (by ∼ δl3, where δl is the difference of side length between different size

voxels). This can be corrected with longer simulation times for increased sampling but,

that would likely not change the trend obtained with slightly larger voxels. However, it is

important to note that using different voxel sizes gives different occupied volume values

that vary proportional to the voxel size; bigger voxels equal greater occupied volume

values. Thus, this method of calculating ϕoccupied is qualitative, rather than quantitative:

changing voxel size does not change the behavior of ϕoccupied with temperature, but it

does change the overall value. Larger voxels greatly coarsen space and thus we chose to

use voxels that reflect the dimensions of the species under question, meaning side lengths

close to the diameter of the small particle. Any value approximating the latter length

should all give occupied volume values with similar exponential behavior upon the onset

of delocalization.
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A.0.4. Calculation of the specific heat cp

We calculated the specific heat per particle using:

(A.2) cp =
1

N

⟨H2⟩ − ⟨H⟩2

kBT 2
where, ⟨H⟩ = ⟨U⟩+ P ⟨V ⟩ .

The ⟨·⟩ operator signifies an ensemble average. In order to calculate the average internal

energy, ⟨U⟩, of a system, we took into account all known energy contributions of all

particles within it, i.e. all forms of potential energy (excluded volume interactions and

Gaussian bond potentials) and kinetic energy, both translational and rotational. We also

calculated cp employing thermodynamic principles, which should result in the same values

if the system is sufficiently large:

(A.3) cp =
1

N

(
∂ ⟨H⟩
∂T

)
N,P

.

We used cubic spline fitting for ⟨H⟩ and calculated its derivative. Both methods give

similar results for the unconstrained simulations but they are not identical. A large

amount of data is needed to obtain smooth curves from Equation A.2 but they appear

to be converging to those values obtained by Equation A.3 for the unconstrained simu-

lations. Additionally, given that the kinetic energy scales linearly with temperature and

particle velocity distributions follow that of Maxwell-Boltzmann, we neglected kinetic en-

ergy contributions to the internal energy and observed no qualitative change in cp curves.

Therefore, we report cp curves obtained by Equation A.3 without the kinetic energy con-

tribution to the internal energy for the unconstrained simulations. For the fixed lattice

simulations we only employed Equation A.2 to calculate cp because ⟨H⟩ for both sets of
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simulations are almost identical and Equation A.3 will not reflect the reduction in energy

modes due to fixing the lattice.

A.0.5. Evolution of the number of interacting particles as a function of tem-

perature

Here we show the average number of unique large particles interacting with each the small

particle as a function of temperature. The small particles occupy the BCC tetrahedral sites

and are functionalized with identically sized chains. Therefore, they must interact with

at most four unique large particles at any temperature even when delocalized. Figure A.4

shows that indeed the maximum number of unique large particles interacting with a small

one is four for every system. But at temperatures above Tdeloc, there is a non-negligible

fraction of small particles interacting with a lesser amount. This is expected as this

parameter is closely related to delocalization. The close relation between delocalization

and the ratio of unique interacting large particles to small particles is heightened by both

showing continuous behaviour during delocalization. Additionally, Figure A.4 evidences

the seeping of probability between nearest neighbor tetrahedral sites without the visitation

to other sublattice sites, e.g. octahedral (6b Wyckoff positions) sites, which is also clear

from Figure 3 and Figure 6.
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Figure A.4. Distribution of number of large particles interacting with each
small particle. The horizontal grey dotted lines indicate interactions with
4 large particles, which is expected for a small particle that is localized at
a BCC tetrahedral site. An estimate of Tdeloc, the onset of delocalization,
is marked with an arrow and black dotted line for each system.
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APPENDIX B

Supplementary information for Chapter 4

This appendix contains the supplementary information associated with Chapter 4.

The following was originally published in Physical Review Materials in 2021. It is

reproduced here with permission of AUTHORS, and PUBLISHER.
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B.1. Supplementary details on phase diagrams and simulation methods

B.1.1. More detailed simulation methods

More details on annealing, initializing with different configurations and system

sizes, and determining crystal type

The majority of points on the phase diagram were simulated using more than one

initial configuration. This was done to ascertain the system configuration for production

which was later analyzed. Two main initial configurations were used, FCC and BCC.

Both configurations began with a lattice parameter of 70σ which is always at least 3

times larger than any stable crystal lattice parameter obtained. With such a large initial

lattice parameter, we expect that the equilibrium configuration of each simulation should

not be affected or limited given their initial configuration. Therefore, we can assume sim-

ulations with different initial configurations, but same physical parameters, are effectively

simulations of different system sizes, for example, simulations initialized as a FCC crystal

will have two times the number of particles as those initialized as a BCC.

https://journals.aps.org/prmaterials/abstract/10.1103/PhysRevMaterials.5.115601
https://journals.aps.org/prmaterials/abstract/10.1103/PhysRevMaterials.5.115601
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We implemented an annealing protocol for certain kinetically jammed simulations, and

for situations in which multiple runs with the same parameter set resulted in different

crystals (i.e. on initialized as an BCC and the other initialized as an FCC). In the cases

where there was initial conflicting information about what the equilibrium lattice was,

we annealed both until both simulations resulted in the same lattice. This was also true

for systems exhibiting two-phase coexistence. If the percent of the box identified as BCC

and FCC (using techniques described in the next section) were vastly different for runs,

we also annealed both simulations to test whether they would converge to similar values.

They did, and we did not use final values unless all simulations run under the same

temperature, ns:nl, and number of chains per small particle agreed.

Most simulations that required annealing were systems with low composition. As de-

scribed in the main text, the small particles interact with more large particles at lower

small to large particle number ratios. This consequently drives the formation of denser

crystals which are prone to kinetically trapped configurations. Different flavors of an-

nealing protocols were employed, but all consisted in raising and lowering the heat bath’s

temperature albeit in different manners. The temperature ramps followed either an expo-

nentially decaying sinusoidal, a square wave or a sequence of step functions of decreasing

value. Additionally, larger simulation systems required higher maximum temperatures for

their temperature ramp than smaller simulation sizes. In very unusual cases, only three

points of the phase diagram, a barostat ramp was employed followed by a temperature

ramp to verify the crystal’s stability.

To determine crystal type resulting from a simulation, we analyzed the pair correlation

function g(r) of the large particles. The ratios of distances to peaks and relative peak
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heights are unique for different crystal types (SC, BCC, FCC, etc.). Pair correlation

functions were calculated using VMD [125] (without periodic boundary conditions because

VMD’s tool does not calculate g(r) with periodic boundary conditions in simulation boxes

that do not have right angles) and compiled in an online tool we built 1. If g(r) peak

ratios and relative heights matched a known crystal (for example, BCC), we classified the

crystal. If not, we used the Python package pymatgen [162] to identify the symmetry of

the lattice, then compared to online databases such as AFLOW 2 [163, 164], and verified

by independently reproducing the g(r) using AFLOW parameters and the python package

freud. For example, this is how we identified A20 and Ad crystals. Finally, if the lattice

visually resembled a BCT, we used calculations in Mathematica to predict the most likely

g(r) peak ratios as a function of c/a (see the Supplementary Materials section on BCT

lattice parameters). If peak ratios from simulation matched any predicted value of c/a,

we verified by reproducing the g(r) with these parameters using the freud library [252].

B.1.2. Calculations of compositions in the systems exhibiting two-phase co-

existence

Polyhedral template matching (PTM) [253] as implemented in OVITO [254] version 3.4

was used to identify which phase particles belonged to. This identification method relies

on comparing the distances and graph symmetries of neighboring particles of a central

particle with those of a perfect candidate crystal called template. Given the lack of a

cut-off distance to identify neighboring particles and the nature of the graph analysis

between template and simulation points, this method is more robust against thermal

1available at aliehlen.github.io/phase_diagrams
2http://www.aflowlib.org/
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fluctuations than other lattice identification algorithms like adaptive common neighbor

analysis. Although, like any identification algorithm, the minimization and low value of

an objective function is what determines the likelihood of whether or not a set of points

corresponds to a given phase. It is here where some uncertainty enters this scheme of

identification because a bounding value must be considered for the objective function.

Here the objective function is a root-mean-square-deviation (RMSD) between two sets

of points. One set is obtained from simulation coordinates and the other corresponds to

lattice points from a perfect crystal. Here we used a maximum RMSD value of 0.5.

Using PTM we calculated the arithmetic mean of the number of particles in a certain

phase over at least 100 uncorrelated frames. We compared data between simulations of

different sizes (systems initialized as BCCs and FCCs) and average phase values seemed

to be statistically equivalent. This indicates that the average phase values reported are

not entirely dependent on system size and physically meaningful.

B.2. Full structure detail: phase diagrams and comparison of energy

landscapes and simulations

B.2.1. Full phase diagrams and lattice specification

Here, we include full information about the plotted phase diagrams, including lattice

parameters of the various lower-symmetry crystals reported in this paper. This is shown

in Fig. B.1. Note that one BCT parameter ratio is still undefined. Below are listed the

lattice points and parameter sets for all types of lattice reported.
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Figure B.1. Phase diagrams for the 3:1 and 4:1 compositions systems, also
shown in the main paper. These are superimposed with additional detail
about the A20 and BCT crystal lattice parameters. Note that all unlabeled
BCT points have c

a
= 2. The parameters differentiating 3:1 A20 and 4:1

A20 crystals are defined in this section.

An interactive version of the phase diagrams, including plots of the pair correlation

function of the large colloids in each lattice, can be found at https://aliehlen.github.

io/phase_diagrams/.

A20: Orthorhombic, space group 63 (Cmcm)

Parameters: a ̸= b ̸= c, y

Parameter ratios observed: For A20 crystals observed in 3:1 systems, b/a ∼ 2.36, c/a ∼

1.44, y = 0.14. For those in 4:1 systems, b/a ∼ 2.5, c/a ∼ 1.4 y = 0.3613

https://aliehlen.github.io/phase_diagrams/
https://aliehlen.github.io/phase_diagrams/
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Basis points in (x̂, ŷ, ẑ) basis:

a⃗1 = (a, 0, 0)

a⃗2 = (0, b, 0)

a⃗3 = (0, 0, c)

Lattice points in (a⃗1, a⃗2, a⃗3) basis:

(0, y, 0.25)

(0,−y, 0.75)

(0.5, y − 0.5, 0.25)

(0.5, 0.5− y, 0.75)

Primitive cell convention:

Basis points in (x̂, ŷ, ẑ) basis:

a⃗1 = (1
2
,−1

2
b, 0)

a⃗2 = (1
2
a, 1

2
b, 0)

a⃗3 = (0, 0, c)

Lattice points in (a⃗1, a⃗2, a⃗3) basis:

(−y, y, 0.25)

(y,−y, 0.75)

Ad: Tetragonal, space group 129 (P4/nmm)

Parameters: a = b ̸= c, z

Parameter ratios observed: a =
√
c. Various values of z between 0.4 and 0.5, increasing

with higher temperature. When z = 0.5, this becomes identical to a BCT with c′/a′ = 2.
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Basis points in (x̂, ŷ, ẑ) basis:

a⃗1 = (a, 0, 0)

a⃗2 = (0, a, 0)

a⃗3 = (0, 0, c)

Lattice points in (a⃗1, a⃗2, a⃗3) basis:

(3
4
, 1
4
, 0)

(1
4
, 3
4
, 0)

(1
4
, 1
4
, z)

(3
4
, 3
4
,−z)

129a: Tetragonal, space group 129 (P4/nmm)

Parameters: a = b ̸= c, z

Parameter ratios observed: a = 0.94c, z = 0.3. Note that this lattice is observed only

once in our simulations, and this is in a low-temperature 5:1 system. It is visually similar

to a BCC, but compressed in one direction in such a way that there are 10 interstitial

sites instead of 12. It is also equivalent to an Ad without the first two lattice points.

Basis points in (x̂, ŷ, ẑ) basis:

a⃗1 = (a, 0, 0)

a⃗2 = (0, a, 0)

a⃗3 = (0, 0, c)

Lattice points in (a⃗1, a⃗2, a⃗3) basis:

(1
4
, 1
4
, z)

(3
4
, 3
4
,−z)

BCT: Tetragonal, space group 139 (I4/mmm)

Parameters: a = b ̸= c
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Parameter ratios observed: c/a = 2 (most common), c/a =
√

2/3, and one unclassified

parameter set.

Basis points in (x̂, ŷ, ẑ) basis:

a⃗1 = (a, 0, 0)

a⃗2 = (0, a, 0)

a⃗3 = (0, 0, c)

Lattice points in (a⃗1, a⃗2, a⃗3) basis:

(0, 0, 0)

(0.5, 0.5, 0.5)

BCC: Cubic, space group 229 (Im3m)

Parameters: a = b = c

Parameter ratios observed: N/A

Basis points in (x̂, ŷ, ẑ) basis:

a⃗1 = (a, 0, 0)

a⃗2 = (0, a, 0)

a⃗3 = (0, 0, a)

Lattice points in (a⃗1, a⃗2, a⃗3) basis:

(0, 0, 0)

(0.5, 0.5, 0.5)

FCC: Cubic, space group 225 (Fm3m)

Parameters: a = b = c

Parameter ratios observed: N/A
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Basis points in (x̂, ŷ, ẑ) basis:

a⃗1 = (a, 0, 0)

a⃗2 = (0, a, 0)

a⃗3 = (0, 0, a)

Lattice points in (a⃗1, a⃗2, a⃗3) basis:

(0, 0, 0)

(0.5, 0.5, 0)

(0.5, 0, 0.5)

(0, 0.5, 0.5)

B.2.2. Types of BCT lattices

The BCT crystals that we have observed have c/a ratios that lead to higher-symmetry

arrangements. This can be seen in Fig. B.2. This means that the distance between

distinct lattice points are equal. For example, for c/a =
√
2 (when a BCT structure is

equivalent to an FCC structure), the distance from the (0,0,0) point in a BCT unit cell

to the adjacent corner (a) is equal to the distance to the point at the center of the unit

cell (1
2

√
c2 + 2a2).

B.2.3. Identification of interstitial sites using unit cell energy landscape

We found that, with the exception of the FCC crystal, the potential energy landscape

is a good predictor of the location of the small colloid species. The small particle cores

localize at the near-neutral points in the energy landscape, while the interactive beads at

the ends of their chains localize at or on the border of the energy wells (this is dependent

on the reach of the chains). Here, we show direct comparisons between calculated energy
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Figure B.2. For a value of a = 1, the distance from the point (0, 0, 0) of
a BCT unit cell to the 11 nearest points in the lattice, as a function of
the value of c. Each line on the plot represents one lattice point. Higher
symmetry points (where the lines cross i.e. where distances to multiple
distinct lattice sites are equal) are highlighted with vertical black lines.
These correspond to the c/a ratios seen in BCT lattices observed in this
study.

landscapes and simulations results. It is difficult to adequately compare three dimensional

structures in two dimensions, so we have included representative two-dimensional slices

for each crystal type as an example in Table B.1. Mathematica notebooks showing three

dimensional plots of the energy landscapes are available upon request.

B.3. Supplementary simulation results

B.3.1. Nearest neighbor plots for identifying lattices

As we have seen, the local spatial symmetry of the small particles varies as a function of

the crystal phase, see Table B.1, this is to be expected. But if the sublattice is delocalized,
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A20 (3:1): ⊥ a⃗3 A20 (3:1): ⊥ 1
2
a⃗3 A20 (4:1): ⊥ a⃗3 A20 (4:1): ⊥ 1

2
a⃗3

Sim. Theory Sim. Theory Sim. Theory Sim. Theory

Ad: ⊥ a⃗3 Ad: ⊥ 1
4
a⃗3 BCT: ⊥ a⃗3 BCT: ⊥ 1

2
a⃗3

Sim. Theory Sim. Theory Sim. Theory Sim. Theory

FCC: ⊥ 1
8
a⃗3 FCC: ⊥ 3

8
a⃗3 FCC: ⊥ 1

4
a⃗3* Sim. Theory

Sim. Theory Sim. Theory Sim. Theory prob. Upot.

Table B.1. Comparison between simulation results and theoretically calculated energy
landscapes. Simulation: visitation frequency of the small particle centers from various
simulations in a given slice of the unit cell. Theory: potential energy landscape of a single
interactive chain end in the same slice of a unit cell of large particles, calculated using
an average lattice parameter from simulation. All slices are taken parallel to the plane
formed by a⃗2 and a⃗3, and at the intersection with a⃗3 indicated by ⊥. Note the similarity
between the regions of high probability in simulation to regions of near-zero potential
energy. The 6:1 case can be found in [135]. *The tetrahedral sites shown here are only
filled when the ns:nl > 8 : 1, i.e. once the 32f sites are full. The other FCC images depict
8:1 systems.
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the small particles’ coordination number to large particles must be different than when

localized. This is due to their exploration of regions that are between their interstitial

sites and should be smaller compared to when localized. Therefore, observing the coor-

dination number distribution of the small particles is indicative of the crystal phase, see

Figure B.3. Additionally, if there is a large percentage of coordination numbers that is

smaller than for a localized sublattice of the same crystal phase, this is a good indication

of sublattice delocalization. For example, we know that four is the coordination number

of the small particles to large particles in a BCC lattice (hence, the tetrahedral intersti-

tial site nomenclature), therefore, a significant percentage of lower coordination numbers

would be indicative of a delocalized sublattice.

B.3.2. Anisotropy of vibrations in BCT lattices

The vibrations of BCT lattices are anisotropic, which can be seen in Fig. B.4. The

x, y, and z directions are based on simulation and do not necessarily correspond to

lattice directions. The important differences between BCT and other lattice types is that

the majority of BCT lattices show vibrations that are not equal in all directions. We

hypothesize that the vibrations in the BCT lattices are perpendicular to the (001) planes

(direction of a⃗3), because of the spacing in the BCT unit cell. Modeling a BCT (c/a = 2)

with thermal noise that is larger in the a⃗3 direction produces a pair correlation function

that matches that of simulation.

According to the combination of Fig. B.4 and Fig. 4, when a crystal transforms from

BCT to BCC, lattice vibrations become more isotropic and greater in magnitude, which

is a component of the entropic favorability of the BCC lattice.
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Figure B.3. Histograms of how many large particles each small particle is
interacting with as a function of T , for all (non-melted) simulations used in
this work. Colors indicate the lattice type. Each lattice type had a unique
distribution, which tends toward lower numbers with increasing T . 6:1 data
taken from [135] and included for comparison.
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Figure B.4. Lattice vibration components for different types of lattices.
Vibrations in BCC and A20 lattices are isotropic because all components
are approximately equal. Vibration components of BCT crystals are not
equal, indicating anisotropy. Different points correspond to different ns:nl

ratios, number of chains per small particle, and T .

B.3.3. Lattice density as a function of temperature

Plot of large particle number density (# large particles per volume) as a function of T ,

ns:nl, and number of chains per small particle. Density is a more useful metric for com-

parison than lattice parameter, because some crystal types are characterized by multiple

lattice parameters.

B.3.4. Small particle chain end-to-end distance

End-to-end distance of the chains attached to the small particles. This decreases with

temperature as chains explore more configurational space, and increases with number of

chains per small particle because of excluded volume effects. The crystal lattice configura-

tion also impacts the chain end-to-end distance, as can be seen in the small but consistent

change in values between different crystal types.
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Figure B.5. Large particle number density of all (non-melted) simulations
used in this work.

B.3.5. Vibrational Density of States

The vibrational density of states D(ω) is calculated by normalizing the real part of the

Fourier transform of the velocity auto-correlation function (VACF) of the large parti-

cles [153]:

(B.1) VACF =
⟨v⃗(t) · v⃗(0)⟩
⟨v2(0)⟩

An approximate resolution of 37 ps is used for sampling data points for the construction

of the VACF. In the left panel of Fig. B.7 we observe D(ω) for two different crystals.

The left panel shows data for a 4:1 system with 8 grafted chains per small particle at
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Figure B.6. Average end-to-end distance of the chains grafted on the small
particles for all (non-melted) simulations used in this work.

T = 1.3 (blue curve, forms a BCT with a localized sublattice) and T=1.7 (red curve,

forms a BCC with a delocalized sublattice). The lower temperature system has a more

complex D(ω) than the higher temperature one. This is relevant given that a bias towards

lower vibrational frequencies at higher T is also observed in the Peierls metallic-insulator

transition of VO2 [150].

The right panel of Fig. B.7 shows D(ω) for a a 6:1 system with 8 grafted chains per

small particle at T = 1.3 (blue curve, forms a BCC with a localized sublattice) and T

= 1.7 (blue curve, forms a BCC with a delocalized sublattice). There is little qualitative

difference in the shape of D(ω) between two crystals with the same structure but different
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Figure B.7. Vibrational density of states for two systems that exhibit dif-
ferent sublattice transitions. The 4:1 system (right panel) with 8 grafted
chains per small particle exhibits a first order sublattice phase transition at
which it forms a BCT lattice with a fixed sublattice at T = 1.3 and forms
a BCC phase with a delocalized lattice at T = 1.7. A similar system but
with a 6:1 ratio (right panel) remains a BCC lattice when its sublattice is
localized at T = 1.3 (blue curve) and delocalized T = 1.7 (red curve)

degrees of sublattice delocalization, though there is a slight shift toward lower frequencies

at higher temperature.

B.3.6. Vibrational Entropy

We calculate vibrational entropy Svib using

(B.2) Svib = 3

∫ ωmax

0

dωD(ω) [(n(ω) + 1) ln (n(ω) + 1)− n(ω) ln (n(ω))]

where D(ω) is the vibrational density of states and n(ω) = 1

e
ℏω

kBT −1

is the Bose-Einstein

occupation factor. We use a cutoff frequency of ωmax = 6 GHz. This expression for Svib
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has been employed with a D(ω) obtained from either experimental measurements [150]

or simulations [151].

B.3.7. Existence of crystals with grain boundaries at 7:1 ns : nl

As discussed in Section 4.2.2.3 of the main text, we observe the existence of grain bound-

aries in mostly BCC lattices for 7:1 systems with 8 and 10 grafted chains per small particle

at low T . This is shown in Fig. B.8 where the left image corresponds to a mostly BCC

lattice with a grain boundary in its diagonal, while the right image corresponds to its

sublattice composed of small particles. Interestingly, we do not see the appearance of

stable grain boundaries in 7:1 systems with 6 grafted chains per small particles, we posit

this is due to the lower enthalpic effects of the small particles that prevents the growth of

a stable grain boundary.

B.3.8. Momentum transfer of the lattice to neighboring small particles

In order to quantify the momentum coupling between the lattice and small particles for

systems that exhibit a first order crystal phase transition, we calculated the velocity-cross

correlation function [154–156]

γ(t) =
⟨v⃗s,i(t) · v⃗l,j(0)⟩R√

v2s(0)v
2
l (0)

where v⃗s,i is the velocity of the i-th small particle, v⃗l,j is the velocity of the j-th large par-

ticle and ⟨·⟩R is a restricted ensemble average over pairs whose distance r =
√

||r⃗s,i − r⃗l,j||

is within a range R. In this work, we choose R ∈ (0, 15.75)σ where σ is the simulation

length unit. γ(t) is then interpreted as the momentum imparted by a large particle to
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Figure B.8. Formation of grain boundaries in 7:1 systems with mostly a
BCC lattice and 8 and 10 grafted chains per small particles at low T . The
left image represents a snapshot of only the large particles where the color
blue denotes a BCC lattice. The colors green, red, and white represent the
HCP, FCC, and no lattice, respectively. The right image is the sublattice
of the left image.
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small particles within a sphere with radius 15.75σ, and a slower decay of the oscillations of

γ(t) signify a greater momentum exchange. In the left panel of Fig. B.9, we plot γ(t) for

a 4:1 mixture with 8 grafted chains on the small particles at two different temperatures.

The system at T = 1.3 (blue curve) forms a BCT lattice with a localized sublattice, while

at T = 1.7 (red curve) it has transitioned to a BCC crystal with a delocalized sublattice.

Here we see a greater momentum exchange from the large particles to the small particles

when the 4:1 system in the sublattice delocalized BCC phase, consistent with a Peierls

insulator-metal transition. Meanwhile, for comparison to a system that does not exhibit

a Peierls-like transition, the right panel shows γ(t) for a 6:1 system with 8 grafted chains

per small particles and for the same temperatures as the systems on the left. These crys-

tals are both BCC lattices, but the sublattice is localized at lower T (blue curve) and

delocalized at higher T (red curve). We observe no clear difference between the system

with a localized sublattice and that with a delocalized one. This is contrasting to the 4:1

case, which had a first order sublattice transition.

B.3.9. Heat capacity cP

We calculate the heat capacity cP of all crystal phases using

(B.3) cP =
1

N

(
∂ ⟨H⟩
∂T

)
N,P

≈ 1

N

∆ ⟨H⟩N,P

∆T

Where N is the total number of particles in the system, H is the enthalpy of the system, T

is the simulation temperature, and P is the simulation pressure. As indicated in Equation

3, we approximate the partial derivative of H with respect to T by calculating the ratio
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Figure B.9. Velocity cross-correlation function γ(t) for a system that has
a first order sublattice phase transition and another system that exhibits a
continuous change from a localized to delocalized sublattice. The 4:1 system
(right panel) with 8 grafted chains per small particle exhibits a first order
sublattice phase transition at which it forms a BCT lattice with a fixed
sublattice at T = 1.3 and forms a BCC phase with a delocalized lattice
at T = 1.7. A similar system but with a 6:1 ratio (right panel) remains
a BCC lattice when its sublattice is localized at T = 1.3 (blue curve) and
delocalized T = 1.7 (red curve)

of differences of H and T between neighboring simulation points of identical physical

parameters ordered sequentially by ascending simulation temperatures.

As indicated in the main text, a discontinuity in S indicates a first order phase transi-

tion, while the existence of an inflection point could indicate a continuous phase transition.

We observe likely signatures of both behaviors in our system, as discussed in Section 4.2.2.

of the main text. However, particularly since we are only estimating entropy using Svib.,

it is necessary to observe additional signatures within cP to conclude which type of phase

transition if any is present in these systems. To confirm the existence of a first order phase
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transition, there must be an undefined point within cP (corresponding to the discontinuity

in S), while a discontinuity or divergence in cP would be expected for a continuous phase

transition. In simulations and in experiments, properly identifying a phase transition is

a difficult task due to finite size effects and the amount of data needed to confirm such

mathematical points. Our case is no different and thus we can only suggest the presence

of these points given a combination of a qualitative understanding of our system, phys-

ical arguments by those such as Landau et al. [152], and observations in Fig. B.10 and

Fig. B.11.

Fig. B.10(b) and Fig. B.11(b) show Svib., which appears to show a discontinuity at

any transition from a non-cubic, localized lattice to a delocalized BCC lattice for systems

with more than 4 chains per small particle, and a possible kink for systems with 4 chains

per small particle. Fig. B.12 shows no change in lattice type and no such discontinuity in

Svib.. The plotted values of cP show a spike at points of structural transition, indicated by

a black circle. This indicates a first order phase transition, and by comparing interstitial

and lattice sites and the argument of Landau et al., we expect that for the transition BCT

( c
a
= 2) → BCC. If this is the case, this spike should become an undefined point for larger

system sizes and with much more dense data.

There are indications of small peaks or discontinuities at other transitions (BCT ( c
a
=√

2
3
) → BCC, Ad → BCT ( c

a
= 2) ). This may indicate the presence of a continuous

phase transition, and with more data and by varying system size, we would be able to

distinguish more precisely the behavior of cP there.

In contrast, Fig. B.12 shows no crystal lattice transition at any temperature, and no

peak in cP . The change in slope of Svib. for the system with 10 chains per small particle
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Figure B.10. Thermodynamic quantities of all stable crystal phases for
particle number ratio 3:1 (ns : nl) as a function of simulation temperature.
We plot the (a) average interaction energy per small particle Uint./kBT, (b)
lattice entropy Svib., and (c) cP , calculated as the slope between simulation
points j, j+1 using 1

N

Hj+1−Hj

Tj+1−Tj
, per Eq. (B.3). Hollow circles indicate points

for which simulations j and j + 1 resulted in different crystal types. We
can see evidence for a first order phase transition for systems with greater
than 4 chains. At region where there is a a crystal phase transition, we see
evidence for a discontinuity in the average interaction energy and lattice
entropy, along with a peak in their cP , indicative of a possible undefined
point. For systems with 4 chains, we see evidence for a continuous phase
transition in cP , namely, a possible discontinuity between different crystal
structures.

may indicate interesting behavior, but because this does not correspond to a transition to

delocalization of the sublattice, it is out of the scope of this paper to explore this further.
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Figure B.11. Thermodynamic quantities of all stable crystal phases for
particle number ratio 4:1 as a function of simulation temperature. We plot
the (a) average interaction energy per small particle Uint./kBT, (b) lattice
entropy Svib., and (c) cP , calculated as the slope between simulation points
j, j + 1 using 1

N

Hj+1−Hj

Tj+1−Tj
, per Eq. (B.3). Hollow circles indicate points for

which simulations j and j+1 resulted in different crystal types. We can see
evidence for a first order phase transition for systems with greater than 4
chains. At region where there is a a crystal phase transition, we see evidence
for a discontinuity in the average interaction energy and lattice entropy,
along with a peak in their cP , indicative of a possible divergence. For
systems with 4 chains and for the Ad → BCT transitions, we see evidence
for a continuous phase transition, namely, a possible discontinuity in cP
between different crystal structures.
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Figure B.12. Thermodynamic quantities of all stable crystal phases for
particle number ratio 6:1 as a function of simulation temperature. We
plot the (a) average interaction energy per small particle Uint./kBT, (b)
lattice entropy Svib., and (c) cP . Invariant of number of chains, we see no
evidence for a any type of phase transition due to the continuous nature
of all thermodynamic parameters plotted. The lack of hollow circles in cP
is also indicative of a lack of any phase transition occurring in these 6:1
systems.
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APPENDIX C

Supplementary information for Chapter 6

This appendix contains the supplementary information associated with Chapter 6.

The following was originally published in Soft Matter in 2024. It is reproduced here

with permission of AUTHORS, and PUBLISHER.
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Reproduced from [204] with permission from the Royal Society of Chemistry.

DOI: https: // doi. org/ 10. 1039/ D4SM00010B

Supplementary Information

C.1. Microroller speed against rotational frequencies

We measure the microroller speed as a function of the applied rotational frequency.

We carry the pattern experiments in the frequency range to which the speed is propor-

tional to make sure that the applied torque is the dominant mechanism of the microroller

translation.

https://doi.org/10.1039/D4SM00010B
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Figure C.1. Microroller speed is proportional to the applied fre-
quency. We make a microroller water suspension with low concentration
(few microrollers within the field of view), and apply a rotational magnetic
field with a constant field strength (80 Gs) in a range of frequencies. Then,
we measure the average speed of the microrollers and fit a straight line
across the whole data set. The black dashed line shows the fitting result;
the slope of the line is 0.13 µm.

C.2. Microroller displacement in a passive suspension

Fig. C.2 shows the microroller displacement in a passive colloidal suspension with two

rotational frequencies.
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Figure C.2. Microroller speed is constant in the colloidal sus-
pension. We track the displacement of a microroller in a suspension
(ϕarea = 0.16%) that is driven by two different frequencies. We find that
the speed is constant and is again proportional to the rotational frequency.

C.3. Depletion region is affected by the mass of the passive particles
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Figure C.3. The depletion region is strongly affected by gravita-
tional forces on the passive particles. We performed two sets of simu-
lations where we independently turn of near-field interactions and gravita-
tional forces. In (a) we show the emergent pattern from simulations without
near-field interactions between particles. The depletion region is unaffected
by near-field interactions as it is still present in the pattern. Meanwhile,
(b) is the emergent pattern from simulations with mass-less passive parti-
cles and observe that the depletion region is largely affected.

C.4. Supporting Tables
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Parameter Value Units

Microroller radius 1.0 × 10−6 m

Passive particle radius 1.0 × 10−6 m

Microroller buoyant mass 3.1 × 10−15 kg

Passive particle buoyant mass 2.5 × 10−16 kg

Water viscosity 0.001 Pa s

ϵcut 2 × 10−21 J

κcut 0.001 × 10−6 m

Particle-particle rLubticationcutoff 5 × 10−6 m

Particle-particle rLubricationcutoff 104 m

GMRES solver tolerance 10−6 (dimensionless)

τymax 4.0× 10−18 N m

Table C.1. Parameters used in all simulations.
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ϵ (10−18 J) κ (µm) height (µm)

0.0386 0.0756 1.212

0.0526 0.0816 1.246

0.029 0.29 1.339

0.06 0.17 1.415

0.06 0.21 1.467

0.08 0.19 1.498

0.12 0.21 1.615

0.19 0.22 1.734

0.29 0.23 1.853

Table C.2. Yukawa type potential parameters used in simulations to pro-
duce different microroller heights at T = 0K.
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ϵ (10−18 J) κ (µm) height (µm)

0.00386 0.0756 1.229

0.00526 0.0816 1.266

0.0029 0.29 1.406

0.006 0.17 1.453

0.006 0.21 1.515

0.008 0.19 1.539

0.012 0.21 1.661

0.019 0.22 1.782

0.029 0.23 1.905

Table C.3. Yukawa type potential parameters used in simulations to pro-
duce different passive particle heights at T = 0K.

ϵ (10−18 J) κ (µm) Average height (µm)

0.0386 0.0756 1.305 ± 0.143

0.0526 0.0816 1.335 ± 0.147

0.0346 0.1036 1.339 ± 0.158

0.029 0.29 1.394 ± 0.215

Table C.4. Yukawa type potential parameters used in simulations to pro-
duce different microroller heights at T = 293K.
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ϵ (10−18 J) κ (µm) Average height (µm)

0.00386 0.0756 1.964 ± 0.915

0.00526 0.0816 2.020 ± 0.939

0.00346 0.1036 1.973 ± 0.924

0.0029 0.29 2.1189103 ± 1.006

Table C.5. Yukawa type potential parameters used in simulations to pro-
duce different passive particle heights at T = 293K.
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